The science of immunology emerged in the last of the 19th and the first of the 20th century. Substantial progress in physics, chemistry and microbiology was essential for its development. Indeed, microorganisms became one of the principal investigative tools of the major founders of that science - Louis Pasteur, Robert Koch, Ilya Ilich Metchnikoff, Paul Ehrlich and Jules Bordet. It is pertinent that these pioneering scientists were born when questioning and exploration were encouraged because of the legacies of the previous century of enlightenment. Mentors greatly aided their development. Their discoveries were shaped by their individual personalities. In turn they developed other contributors to the nascent field. Their discoveries included the types of leukocytes, the roles of neutrophils in inflammation and defence, cellular lysis due to complement, the principles of humoral and cellular immunology, passive and active immunization, tissue antigens, anaphylaxis, anaphylactoid reactions and autoimmunity. Their work formed the basis of modern immunology that developed many decades later. Immunology has enormously impacted our understanding of the pathogenesis, diagnosis and treatment of infections, immune-mediated disorders and inflammation. Burgeoning advances forecast further important clinical applications of immunology. Yet, their applications will be problematic because few physicians sufficiently understand the science. We propose that understanding modern immunology requires a grasp of how that science developed - who made the discoveries, how they were made, their successes and failures, their interactions and debates all reveal the foundation of modern immunology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1258/jmb.2010.010009 | DOI Listing |
Breast Cancer (Dove Med Press)
January 2025
Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia.
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential.
View Article and Find Full Text PDFNeoplasia
January 2025
Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:
T-cell recruiting chemokines are required for a successful immune intervention in ovarian cancer, and also for the efficacy of modern anticancer agents such as PARP inhibitors. The chemokine CX3CL1 recruits tumour-suppressive T-cells into solid tumours, but also mediates cell-cell adhesions, e.g.
View Article and Find Full Text PDFViruses
January 2025
Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
The present study aims to better understand the nature of currently circulating GPV strains and their pathological impact on the immune system during natural outbreaks among different duck breeds in Egypt. For this purpose, 99 ducks (25 flocks) of different breeds, aged 14-75 days, were clinically examined, and 75 tissue pools from the thymus, bursa of Fabricius, and spleen were submitted for virus detection and identification. Clinical and postmortem findings were suggestive of GPV infection.
View Article and Find Full Text PDFViruses
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!