Biological therapies, even humanized mAbs, may induce antiglobulin responses that impair efficacy. We tested a novel strategy to induce tolerance to a therapeutic mAb. Twenty patients with relapsing-remitting multiple sclerosis received an initial cycle of alemtuzumab (Campath-1H), up to 120 mg over 5 d, preceded by 500 mg SM3. This Ab differs from alemtuzumab by a single point mutation and is designed not to bind to cells. Twelve months later, they received a second cycle of alemtuzumab, up to 72 mg over 3 d. One month after that, 4 of 19 (21%) patients had detectable serum anti-alemtuzumab Abs compared with 145 of 197 (74%) patients who received two cycles of alemtuzumab without SM3 in the phase 2 CAMMS223 trial (p < 0.001). The efficacy and safety profile of alemtuzumab was unaffected by SM3 pretreatment. Long-lasting "high-zone" tolerance to a biological therapy may be induced by pretreatment with a high i.v. dose of a drug variant, altered to reduce target-binding.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1000422DOI Listing

Publication Analysis

Top Keywords

novel strategy
8
biological therapies
8
cycle alemtuzumab
8
alemtuzumab
5
strategy reduce
4
reduce immunogenicity
4
immunogenicity biological
4
therapies biological
4
therapies humanized
4
humanized mabs
4

Similar Publications

Tuberculosis remains a leading global health threat, exacerbated by the emergence of multi-drug-resistant strains. The search for novel therapeutic agents is critical in addressing this challenge. This review systematically summarizes the potential of oxadiazole derivatives as promising candidates in antimycobacterial drug discovery.

View Article and Find Full Text PDF

Advances and applications of genome-edited animal models for severe combined immunodeficiency.

Zool Res

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:

Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.

View Article and Find Full Text PDF

NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction.

Circ Res

January 2025

Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications.

J Cell Sci

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.

Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized.

View Article and Find Full Text PDF

Background And Aims: The lack of therapeutic response characterizes treatment-resistant depression despite undergoing at least two adequate monotherapy trials with medications from distinct pharmacologic classes. The inability to attain remission in patients diagnosed with major depressive disorder (MDD) is a significant issue of concern within public health. Therefore, the management of treatment-resistant depression (TRD) poses significant obstacles for both patients and healthcare professionals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!