Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) is a dominantly inherited degenerative disorder caused by mutations in the valosin-containing protein (VCP7) gene. VCP (p97 in mouse, TER94 in Drosophila melanogaster, and CDC48 in Saccharomyces cerevisiae) is a highly conserved AAA(+) (ATPases associated with multiple cellular activities) ATPase that regulates a wide array of cellular processes. The mechanism of IBMPFD pathogenesis is unknown. To elucidate the pathogenic mechanism, we developed and characterized a Drosophila model of IBMPFD (mutant-VCP-related degeneration). Based on genetic screening of this model, we identified three RNA-binding proteins that dominantly suppressed degeneration; one of these was TBPH, the Drosophila homolog of TAR (trans-activating response region) DNA-binding protein 43 (TDP-43). Here we demonstrate that VCP and TDP-43 interact genetically and that disease-causing mutations in VCP lead to redistribution of TDP-43 to the cytoplasm in vitro and in vivo, replicating the major pathology observed in IBMPFD and other TDP-43 proteinopathies. We also demonstrate that TDP-43 redistribution from the nucleus to the cytoplasm is sufficient to induce cytotoxicity. Furthermore, we determined that a pathogenic mutation in TDP-43 promotes redistribution to the cytoplasm and enhances the genetic interaction with VCP. Together, our results show that degeneration associated with VCP mutations is mediated in part by toxic gain of function of TDP-43 in the cytoplasm. We suggest that these findings are likely relevant to the pathogenic mechanism of a broad array of TDP-43 proteinopathies, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890254 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5894-09.2010 | DOI Listing |
Cell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFTDP-43 mislocalization and pathology occurs across a range of neurodegenerative diseases, but the pathways that modulate TDP-43 in neurons are not well understood. We generated a Halo-TDP-43 knock-in iPSC line and performed a genome-wide CRISPR interference FACS-based screen to identify modifiers of TDP-43 levels in neurons. A meta-analysis of our screen and publicly available screens identified both specific hits and pathways present across multiple screens, the latter likely responsible for generic protein level maintenance.
View Article and Find Full Text PDFMol Ther
January 2025
Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:
Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia.
Artemisinin is a sesquiterpene lactone derived from the plant L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!