The lack of a clear correlation between design and protection continues to present a barrier to progress in vaccine research. In this article, we outline how surface plasmon resonance (SPR) biosensors are emerging as tools to help resolve some of the key biophysical determinants of protection and, thereby, facilitate more rational vaccine design campaigns. SPR technology has contributed significantly to our understanding of the complex biophysical determinants of HIV neutralization and offers a platform for preclinical evaluation of vaccine candidates. In particular, the concept of reverse-engineering HIV vaccine targets based on known broadly neutralizing antibody modalities is explored and extended to include other infectious diseases, such as malaria and influenza, and other diseases such as cancer. The analytical capacity afforded by SPR includes serum screening to monitor immune responses and highly efficient quality-control surveillance measures. These are discussed alongside key technological advances, such as developments in sample throughput, and a perspective predicting continued growth and diversification of the role of SPR in vaccine development is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1586/erv.10.52DOI Listing

Publication Analysis

Top Keywords

surface plasmon
8
plasmon resonance
8
vaccine design
8
biophysical determinants
8
vaccine
6
resonance vaccine
4
design efficacy
4
efficacy studies
4
studies applications
4
applications future
4

Similar Publications

ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.

View Article and Find Full Text PDF

This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.

View Article and Find Full Text PDF

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

AI integration into wavelength-based SPR biosensing: Advancements in spectroscopic analysis and detection.

Anal Chim Acta

March 2025

Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, 333323, Taiwan. Electronic address:

Background: In recent years, employing deep learning methods in the biosensing area has significantly reduced data analysis time and enhanced data interpretation and prediction accuracy. In some SPR fields, research teams have further enhanced detection capabilities using deep learning techniques. However, the application of deep learning to spectroscopic surface plasmon resonance (SPR) biosensors has not been reported.

View Article and Find Full Text PDF

Interaction and cleavage of cell and plasma proteins by the platelet-aggregating serine protease PA-BJ of Bothrops jararaca venom.

Biochimie

January 2025

Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil. Electronic address:

PA-BJ is a serine protease present in Bothrops jararaca venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins in vitro, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!