Smart lipids for programmable nanomaterials.

Nano Lett

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.

Published: July 2010

Novel, responsive liposomes are introduced, assembled from DNA-programmed lipids allowing sequence selective manipulation of nanoscale morphology. Short, single-stranded DNA sequences form polar head groups conjugated to hydrophobic tails. The morphology of the resulting lipid aggregates depends on sterics and electronics in the polar head groups and, therefore, is dependent on the DNA hybridization state. The programmability, specificity, and reversibility of the switchable system are demonstrated via dynamic light scattering, transmission electron microscopy, and fluorescence microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912439PMC
http://dx.doi.org/10.1021/nl101640kDOI Listing

Publication Analysis

Top Keywords

polar head
8
head groups
8
smart lipids
4
lipids programmable
4
programmable nanomaterials
4
nanomaterials novel
4
novel responsive
4
responsive liposomes
4
liposomes introduced
4
introduced assembled
4

Similar Publications

In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants allow both organic reagents in water to be solubilized and organic reactions to be catalyzed.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Purpose: Cancer stem cells (CSCs) are considered key drivers of progression in head and neck squamous cell carcinoma (HNSCC). Our single-cell RNA sequencing (scRNA-seq) analysis revealed predominant expression of CD271 in CSCs, however, its role as a CSC marker in HNSCC requires further elucidation. We investigated the stemness characteristics of CD271 HNSCC cells and their interactions with the tumor immune microenvironment.

View Article and Find Full Text PDF

Priming and release of cytokine IL-1β in microglial cells from the retina.

Exp Eye Res

January 2025

Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:

The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.

View Article and Find Full Text PDF

Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6.

Proc Natl Acad Sci U S A

January 2025

Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!