Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201000525 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.
View Article and Find Full Text PDFJ Fluoresc
December 2024
Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi, 110042, India.
In the present research work, a solid-state reaction method was employed to synthesize a series of CaGdSbWO:SmEu (x = 1, 1.5, 2, 3 and 4 mol%) phosphors. The phase purity, crystallinity, morphological and compositional studies were analysed via X-ray diffraction (XRD), scanning electron microscopy (SEM) imaging, and energy dispersive spectroscopy (EDS) analysis.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India.
YSiO:Ce, YSiO:Dy, and YSiO:Ce and Dy phosphors were successfully synthesized using the oxalate wet chemical method. Phase purity, emission and excitation spectra, FTIR, and the chromaticity coordinate were adopted to represent the performance of the samples. The photoluminescence (PL) spectrum YSiO:Ce and Dy phosphor shows a broadband in violet-blue region with a bandwidth of nearly 75 nm due to combine effect of Ce-Dy ions with another emission peaks of Dy ions peaking at 574 nm.
View Article and Find Full Text PDFMolecules
November 2024
School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423043, China.
In this study, a series of SrLuAl(BO):Sm red phosphors were successfully prepared with a high-temperature solid-phase technology. The Rietveld refinement analysis of the X-ray diffraction (XRD) diffraction patterns indicated that the as-prepared phosphors belong to the R3¯ space group of the hexagonal crystal system. Under 404 nm near-ultraviolet excitation, the SrLuAl(BO):Sm phosphor exhibits narrowband emission within the range of 550 to 750 nm.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Achieving deep-blue light with high color saturation remains a critical challenge in the development of white light-emitting diode (LED) technology, necessitating luminescent materials that excel in efficiency, low toxicity, and stability. Here, we report the synthesis of [N(CH)]CuI (TEACuI) single crystals (SCs), which exhibit deep-blue photoluminescence (PL) at 450 nm. These crystals are characterized by a significant Stokes shift of 180 nm, a long lifetime of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!