Phosphatidylinositol containing lipidic particles reduces immunogenicity and catabolism of factor VIII in hemophilia a mice.

AAPS J

Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, 526 Hochstetter Hall, Amherst, New York 14260, USA.

Published: September 2010

Factor VIII (FVIII) is an important cofactor in blood coagulation cascade. It is a multidomain protein that consists of six domains, NH2-A1-A2-B-A3-C1-C2-COOH. The deficiency or dysfunction of FVIII causes hemophilia A, a life-threatening bleeding disorder. Replacement therapy using recombinant FVIII (rFVIII) is the first line of therapy, but a major clinical complication is the development of inhibitory antibodies that abrogate the pharmacological activity of the administered protein. FVIII binds to anionic phospholipids (PL), such as phosphatidylinositol (PI), via lipid binding region within the C2 domain of FVIII. This lipid binding site not only consists of immunodominant epitopes but is also involved in von Willebrand factor binding that protects FVIII from degradation in vivo. Thus, we hypothesize that FVIII-PL complex will influence immunogenicity and catabolism of FVIII. The biophysical studies showed that PI binding did not alter conformation of the protein but improved intrinsic stability as measured by thermal denaturation studies. ELISA studies confirmed the involvement of the C2 domain in binding to PI containing lipid particles. PI binding prolonged the in vivo circulation time and reduced catabolism of FVIII in hemophilia A mice. FVIII-PI complex reduced inhibitor development in hemophilia A mice following intravenous and subcutaneous administration. The data suggest that PI binding reduces catabolism and immunogenicity of FVIII and has potential to be a useful therapeutic approach for hemophilia A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895449PMC
http://dx.doi.org/10.1208/s12248-010-9207-zDOI Listing

Publication Analysis

Top Keywords

hemophilia mice
12
fviii
9
immunogenicity catabolism
8
factor viii
8
fviii hemophilia
8
lipid binding
8
catabolism fviii
8
binding
7
hemophilia
5
phosphatidylinositol lipidic
4

Similar Publications

: Hemophilia A is associated with frequent bleeding episodes, joint damage, and reduced bone mineral density (BMD). The role of coagulation factors and inflammatory cytokines on bone metabolism, particularly on osteoblast function, is of increasing interest. However, significant inter-species differences in bone remodeling raise concerns about the translatability of findings from murine models to human systems.

View Article and Find Full Text PDF

Hemophilia A (HA) is caused by mutations in coagulation factor VIII (FVIII). Genome editing in conjunction with patient-derived induced pluripotent stem cells (iPSCs) is a promising cell therapy strategy, as it replaces dysfunctional proteins resulting from genetic mutations with normal proteins. However, the low expression level and short half-life of FVIII still remain significant limiting factors in the efficacy of these approaches in HA.

View Article and Find Full Text PDF

Coagulation is related to inflammation, but the key pathway, especially innate immune system and coagulation regulation, is not well understood and need to be further explored. Here, we demonstrated that neutrophil gelatinase-associated lipocalin (NGAL), an innate immune inflammatory mediator, is upregulated in thrombosis patients. Furthermore, it contributes to the initiation and amplification of coagulation, hemostasis, and thrombosis.

View Article and Find Full Text PDF

Recently approved adeno-associated viral (AAV) vectors for liver monogenic diseases haemophilia A and B are exemplifying the success of liver-directed viral gene therapy. In parallel, additional gene therapy strategies are rapidly emerging to overcome some inherent AAV limitations, such as the non-persistence of the episomal transgene in the rapidly growing liver and immune response. Viral integrating vectors such as in vivo lentiviral gene therapy and non-viral vectors such as lipid nanoparticles encapsulating mRNA (LNP-mRNA) are rapidly being developed, currently at the preclinical and clinical stages, respectively.

View Article and Find Full Text PDF

Comprehensive genome-wide studies are needed to assess the consequences of adeno-associated virus (AAV) vector-mediated gene editing. We evaluated CRISPR-Cas-mediated on-target and off-target effects and examined the integration of the AAV vectors employed to deliver the CRISPR-Cas components to neonatal mice livers. The guide RNA (gRNA) was specifically designed to target the factor IX gene (F9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!