Organic anion-transporting polypeptides (OATPs), members of the SLCO/SLC21 family, mediate the transport of various endo- and xenobiotics. In human liver, OATP1B1, 1B3, and 2B1 are located at the basolateral membrane of hepatocytes and are involved in hepatic drug uptake and biliary elimination. Clinically significant drug-drug interactions (DDIs) mediated by hepatic OATPs have drawn great attention from clinical practitioners and researchers. However, there are considerable challenges to prospectively understanding the extent of OATP-mediated DDIs because of the lack of specific OATP inhibitors or substrates and the limitations of in vitro tools. In the present study, a novel RNA interference knockdown sandwich-cultured human hepatocyte model was developed and validated. Quantitative polymerase chain reaction, microarray and immunoblotting analyses, along with uptake assays, illustrated that the expression and transport activity of hepatic OATPs were reduced by small interfering (siRNA) efficiently and specifically in this model. Although OATP siRNA decreased only 20 to 30% of the total uptake of cerivastatin into human hepatocytes, it caused a 50% reduction in cerivastatin metabolism, which was observed by monitoring the formation of the two major metabolites of cerivastatin. The results suggest that coadministration of a drug that is a hepatic OATP inhibitor could significantly alter the pharmacokinetic profile of cerivastatin in clinical studies. Further studies with this novel model demonstrated that OATP and cytochrome P450 have a synergistic effect on cerivastatin-gemfibrozil interactions. The siRNA knockdown sandwich-cultured human hepatocytes may provide a new powerful model for evaluating DDIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.110.032995 | DOI Listing |
Regul Toxicol Pharmacol
November 2024
USP Botanical Dietary Supplements Admission Evaluation and Labeling Expert Committee, United States Pharmacopeial Convention (USP), Rockville, MD, USA; Procter & Gamble Company, 8700 Mason-Montgomery Rd, Box 2006, Cincinnati, OH, 45040, USA.
Botanical supplements and herbal products are widely used by consumers for various purported health benefits, and their popularity is increasing. Some of these natural products can have adverse effects on liver function and/or interact with prescription and over-the-counter (OTC) medications. Ensuring the safety of these readily available products is a crucial public health concern; however, not all regulatory authorities require premarket safety review and/or testing.
View Article and Find Full Text PDFBiochem Pharmacol
September 2024
Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium. Electronic address:
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype.
View Article and Find Full Text PDFArch Toxicol
August 2024
Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan.
Drug-induced cholestasis results in drug discontinuation and market withdrawal, and the prediction of cholestasis risk is critical in the early stages of drug development. Animal tests and membrane vesicle assay are currently being conducted to assess the risk of cholestasis in the preclinical stage. However, these methods have drawbacks, such as species differences with humans and difficulties in evaluating the effects of drug metabolism and other transporters, implying the need for a cholestasis risk assessment system using human hepatocytes.
View Article and Find Full Text PDFJ Biosci Bioeng
May 2024
Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Chem Res Toxicol
January 2024
State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
Epimedii Folium (EF) is a botanical dietary supplement to benefit immunity. Baohuoside I (BI), a prenylated flavonoid derived from EF, has exhibited the cholestatic risk before. Here, the mechanism of BI on the stability and membrane localization of liver MRP2, a bile acid exporter in the canalicular membrane of hepatocytes, was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!