Tissue inhibitor of metalloproteinases 4 (TIMP4) is expressed highly in heart and found dysregulated in human cardiovascular diseases. It controls extracellular matrix remodeling by inhibiting matrix metalloproteinases (MMPs) and is implicated in processes including cell proliferation, apoptosis, and angiogenesis. Timp4-deficient mice (Timp4(-/-)) were generated to assess TIMP4 function in normal development and in models of heart disease. We deleted exons 1-3 of the Timp4 gene by homologous recombination. Timp4(-/-) mice are born healthy, develop normally, and produce litters of normal size and gender distribution. These mice show no compensation by overexpression of Timp1, Timp2, or Timp3 in the heart. Following cardiac pressure overload by aortic banding, Timp4(-/-) mice have comparable survival rate, cardiac histology, and cardiac function to controls. In this case, Timp4 deficiency is compensated by increased cardiac Timp2 expression. Strikingly, the induction of myocardial infarction (MI) leads to significantly increased mortality in Timp4(-/-) mice primarily due to left ventricular rupture. The post-MI mortality of Timp4(-/-) mice is reduced by administration of a synthetic MMP inhibitor. Furthermore, combining the genetic deletion of Mmp2 also rescues the higher post-MI mortality of Timp4(-/-) mice. Finally, Timp4(-/-) mice suffer reduced cardiac function at 20 months of age. Timp4 is not essential for murine development, although its loss moderately compromises cardiac function with aging. Timp4(-/-) mice are more susceptible to MI but not to pressure overload, and TIMP4 functions in its capacity as a metalloproteinase inhibitor after myocardial infarction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915685PMC
http://dx.doi.org/10.1074/jbc.M110.136820DOI Listing

Publication Analysis

Top Keywords

timp4-/- mice
28
myocardial infarction
12
pressure overload
12
cardiac function
12
mortality timp4-/-
12
mice
10
tissue inhibitor
8
inhibitor metalloproteinases
8
metalloproteinases timp4
8
cardiac pressure
8

Similar Publications

Background: Recent advances in single cell sequencing have led to an increased focus on the role of cell-type composition in phenotypic presentation and disease progression. Cell-type composition research in the heart is challenging due to large, frequently multinucleated cardiomyocytes that preclude most single cell approaches from obtaining accurate measurements of cell composition. Our studies reveal that ignoring cell type composition when calculating differentially expressed genes (DEGs) can have significant consequences.

View Article and Find Full Text PDF

Loss of TIMP3, but not TIMP4, exacerbates thoracic and abdominal aortic aneurysm.

J Mol Cell Cardiol

November 2023

Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. Electronic address:

Aims: Aorta exhibits regional heterogeneity (structural and functional), while different etiologies for thoracic and abdominal aortic aneurysm (TAA, AAA) are recognized. Tissue inhibitor of metalloproteinases (TIMPs) regulate vascular remodeling through different mechanisms. Region-dependent functions have been reported for TIMP3 and TIMP4 in vascular pathologies.

View Article and Find Full Text PDF

The study was design to investigate the functional roles of Wilms tumor 1-associated protein (WTAP), an enzyme catalyzes m6A modification, in the pathogenesis of osteoarthritis (OA) and further elucidate its possible regulatory mechanism. Herein, we discovered that WTAP was outstandingly upregulated in chondrocyte stimulated with Lipopolysaccharide (LPS) and cartilage tissue of patients with OA. Functional studies have demonstrated that WTAP knockdown enhances proliferation ability, suppresses apoptosis, and reduces extracellular matrix (ECM) degradation in an LPS-induced OA chondrocyte injury model and ameliorates cartilage damage in a destabilizing the medial meniscus (DMM)-induced OA mice model.

View Article and Find Full Text PDF

Targeting interleukin-21 inhibits stress overload-induced cardiac remodelling via the TIMP4/MMP9 signalling pathway.

Eur J Pharmacol

February 2023

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China. Electronic address:

Background: Increased inflammatory mediators produced by inflamed cells are often connected with pressure-induced cardiac remodelling and heart failure. Interleukin-21 (IL-21) serves as an immunomodulator involved in multiple pathological processes, while the role of IL-21 in pressure-induced cardiac remodelling remains unclear.

Experiment Approach: Cardiac function, CD4T-cell infiltration, and IL-21 and IL-21 receptor expression levels were investigated in a pressure overload mouse model induced by aortic banding (AB) surgery.

View Article and Find Full Text PDF

Reversible physiological cardiac hypertrophy of the maternal heart occurs during pregnancy and involves extracellular matrix (ECM) remodeling. Previous mouse studies revealed that changes in ECM molecules accompany functional changes in the left ventricle (LV) during late pregnancy and postpartum. We evaluated the effect of global deletion in female mice on LV functional parameters and ECM molecules during pregnancy and the postpartum period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!