AI Article Synopsis

  • The study measured how much oxygen reduction happens on sputtered iridium oxide (SIROF) and platinum electrodes used for neural stimulation in an oxygen-saturated saline environment.
  • Oxygen reduction was significant on platinum electrodes, accounting for about 88% of the total charge capacity, while it was minimal on SIROF electrodes, contributing only around 3%.
  • During neural stimulation, no oxygen reduction was detected on SIROF microelectrodes, while platinum electrodes showed a small contribution (7%) of oxygen reduction during current pulsing.

Article Abstract

The extent to which oxygen reduction occurs on sputtered iridium oxide (SIROF) and platinum neural stimulation electrodes was quantified by cyclic voltammetry and voltage-transient measurements in oxygen-saturated physiological saline. Oxygen reduction was the dominant charge-admittance reaction on platinum electrodes during slow-sweep-rate cyclic voltammetry, contributing approximately 12 mC/cm(2) (88% of total charge) to overall cathodal charge capacity. For a 300-nm-thick SIROF electrode, oxygen reduction was a minor reaction contributing 1.3 mC/cm(2), approximately 3% of total charge. During current pulsing with platinum electrodes, oxygen reduction was observed at a level of 7% of the total injected charge. There was no indication of oxygen reduction on pulsed SIROF electrodes. A sweep-rate-dependent contribution of oxygen reduction was observed on penetrating SIROF microelectrodes (nominal surface area 2000 microm(2)) and is interpreted in terms of rate-limited diffusion of oxygen in electrolyte that penetrates the junction between the insulation and electrode shaft. For typical neural stimulation pulses, no oxygen reduction could be observed on penetrating SIROF microelectrodes. Based on the in vivo concentration of dissolved oxygen, it is estimated that oxygen reduction on platinum microelectrodes will contribute less than 0.5% of the total injected charge and considerably less on SIROF electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440212PMC
http://dx.doi.org/10.1109/TBME.2010.2050690DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
36
neural stimulation
12
reduction observed
12
oxygen
10
reduction
9
contribution oxygen
8
sputtered iridium
8
iridium oxide
8
stimulation electrodes
8
cyclic voltammetry
8

Similar Publications

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.

View Article and Find Full Text PDF

Background: Doxorubicin (DOX) is a widely used anticancer drug; However, its nephrotoxicity limits its therapeutic efficacy. This study investigates the protective effects of Perilla Alcohol (PA) against DOX-induced nephrotic syndrome (NS), focusing on its antioxidant and anti-inflammatory properties through the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways.

Methods: A DOX-induced nephrotic syndrome (NS) rat model and a DOX-treated Mouse Podocyte Cell line 5 (MPC5) cell model were used to evaluate the renal protective effects of PA.

View Article and Find Full Text PDF

1D CoMoC-Based Heterojunctional Nanowires from Pyrolytically "Squeezing" PMo/ZIF-67 Cubes for Efficient Overall Water Electrolysis.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.

The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!