Entamoeba histolytica: differential gene expression during programmed cell death and identification of early pro- and anti-apoptotic signals.

Exp Parasitol

Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Col. Ticomán, México, DF, México.

Published: December 2010

We have demonstrated that programmed cell death (PCD) in Entamoeba histolytica is induced in vitro by G418 aminoglycoside antibiotic. To ascertain if biochemical and morphological changes previously observed are paired to molecular changes that reflect a genetic program, we looked here for early differential gene expression during the induction of PCD. Using cDNA-amplified fragment length polymorphisms (AFLPs) and in silico derived analysis we showed in E. histolytica a differential gene expression during PCD induced by G418. The genes identified encoded for proteins homologous to Glutaminyl-tRNA synthase, Ribosomal Subunit Proteins 40S and 18S, Saposin-like, Silent Information Regulator-2 (Sir-2), and Grainins 1 and 2. Using real-time quantitative PCR (RT Q-PCR), we found that glutaminyl-tRNA synthetase, sir-2, grainins and saposin-like genes were strongly overexpressed after 30min of PCD induction, while its expression dramatically decreased up to 60min. On the other hand, overexpression of ribosomal genes increased only 7-fold of basal expression, showing a progressive down-regulation up to 90min. glutaminyl-tRNA synthetase, sir-2 and grainins could act as negative regulators of PCD, trying to control the biochemical changes related to PCD activation. Overexpression of saposin-like gene could act as up-regulator of some cell death pathways. Our results give evidence of the first genes identified during the early stage of PCD in E. histolytica that could be implicated in regulation of apoptotic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2010.05.027DOI Listing

Publication Analysis

Top Keywords

differential gene
12
gene expression
12
cell death
12
sir-2 grainins
12
entamoeba histolytica
8
histolytica differential
8
programmed cell
8
genes identified
8
glutaminyl-trna synthetase
8
synthetase sir-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!