Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions.

Rev Sci Instrum

Physics Division, Los Alamos National Laboratory, P-23, MS-H803, Los Alamos, New Mexico 87545, USA.

Published: May 2010

We describe an ultraviolet (uv) diode laser system for cooling trapped Yb(+) ions. Using four stages of thermoelectric cooling, 10 mW of light at 369.5 nm is obtained by cooling a 373.4-nm uv diode to approximately -20 degrees C. Frequency stabilization is provided by a diffraction grating mounted in the Littrow configuration which allows for a mode-hop free tuning range of approximately 25 GHz. In order to avoid water condensation, the diode laser and associated optics are placed inside an evacuated chamber. Saturated absorption spectroscopy utilizing an Yb hollow cathode lamp is performed. This laser system is currently being used to cool single ions in an experiment whose ultimate goal is to look for modern variation of the fine-structure constant.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3386580DOI Listing

Publication Analysis

Top Keywords

diode laser
12
ultraviolet diode
8
yb+ ions
8
laser system
8
extended temperature
4
temperature tuning
4
tuning ultraviolet
4
diode
4
laser
4
laser trapping
4

Similar Publications

As photobiomodulation is growing in the dental field the aim of this prospective, two-arm clinical trial was to assess the radiographic changes for chronic periapical bone lesions related to mandibular molars after primary root canal therapy with or without applying Diode laser on soft tissue. The samples were randomly divided into a Laser group and a mock laser (ML) group. Preoperative CBCT images were compared 12 months later with postoperative CBCT to gauge the changes in the volume of the bony lesion by two observers.

View Article and Find Full Text PDF

Alkali antimonide semiconductor photocathodes are promising candidates for high-brightness electron sources for advanced accelerators, including free-electron lasers (FEL), due to their high quantum efficiency (QE), low emittance, and high temporal resolution. Two challenges with these photocathodes are (1) the lack of a universal deposition recipe to achieve crystal stoichiometries and (2) their high susceptibility to vacuum contamination, which restricts their operation pressure to ultrahigh vacuums and leads to a short lifetime and low extraction charge. To resolve these issues, it is essential to understand the elemental compositions of deposited photocathodes and correlate them to robustness.

View Article and Find Full Text PDF

The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.

View Article and Find Full Text PDF

Clinical study on low-energy semiconductor laser treatment in the promotion of wound healing after maxillofacial fracture surgery.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine &Dept. of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Objectives: This study aims to evaluate the clinical effect of low-energy semiconductor laser treatment on the promotion of wound healing after maxillofacial fracture surgery.

Methods: A prospective randomized controlled study was conducted. Patients with maxillofacial fractures who were hospitalized in the Department of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, from August 2021 to June 2023 were selected as the study subjects and randomly divided into experimental and control groups.

View Article and Find Full Text PDF

The present study investigates the potential contribution of Photobiomodulation (PBM) to the regeneration of the bone following the extraction of the first mandibular molar in rats. The study evaluates the efficacy of PBM, using both Low-Level Laser Therapy (LLLT) and Light-Emitting Diode Therapy (LEDT), as promotors of osteoblastic activity and the formation of new bone. Study design, setting, and sample: 45 male Wistar rats were divided randomly into three groups of 15 individuals - (i) control group (left lower molar removed only), (ii) the LLL group (molar removed, followed by LLLT), and (iii) the LED group (molar removed, followed by LEDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!