Siderophores are small molecules produced by bacteria under iron-scarcity conditions faced by bacteria inside host. Sideophores bind iron with high affinity (Kd < 10-25 M) and are required for iron transport into the bacterial cell. Small molecules interfering with siderophore functioning can be promising anti-mycobacterial agents. Several molecules with hydrazone as a structural feature are known to have metal chelating property. This prompted us to investigate the metal chelating ability of 2-hydrazino-pyrimidin-4(3H)-one derivatives. In this light, a library of 22 novel molecules with 2- hydrazino-pyrimidin-4(3H)-one moiety was synthesized and the compounds were evaluated against M. tuberculosis under iron-limiting and iron-rich conditions. Interestingly, several molecules showed promising (MIC: < 10 μM) selective activity under iron scarcity conditions. Furthermore, compounds were found to be nontoxic at lower concentration in VERO cell lines using MTT assay. Taken together, we have discovered novel 2-hydrazino-pyrimidin-4(3H)-one molecules active against M. tuberculosis which can be developed as potent antimycobacterial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157340613804488332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!