Aqueous phase reforming of sorbitol over Pt supported on an alumina catalyst is investigated, in order to identify the intermediates involved in the transformation of the initial feed. Parameters such as the sorbitol feed rate and temperature are studied. To identify the intermediates, an approach based on analysis of the gas and liquid phases as well as the total carbon content was developed. According to analysis by gas chromatography combined with mass spectrometry of volatile substances collected with solid-phase microextraction, over 260 compounds are involved in the transformation of sorbitol. Of these, 50 of the major products are identified with high reliability. It is shown that a great variety of compounds, bearing different functionalities, form part of the reaction network. The formation of the majority of identified compounds is explained and a reaction network for the formation of sorbitol and intermediate molecules transformation is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.200900254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!