We have previously shown that a newly developed calpain inhibitor, SNJ-1945 (SNJ), with good aqueous solubility prevents the heart from KCl arrest-reperfusion injury associated with the impairment of total Ca(2+) handling by inhibiting the proteolysis of alpha-fodrin as a cardioplegia. The aim of the present study was to investigate certain actions of this calpain inhibitor, SNJ, on left ventricular (LV) mechanical work and energetics in cross-circulated excised rat hearts undergoing blood perfusion with 40 microM SNJ. Mean end-systolic pressure at midrange LV volume and systolic pressure-volume area (PVA) at mLVV (a total mechanical energy/beat) were significantly increased by SNJ perfusion (P < 0.01). Mean myocardial oxygen consumption per beat (Vo(2)) intercepts (Vo(2) for the total Ca(2+) handling in excitation-contraction coupling and basal metabolism) of Vo(2)-PVA linear relations were significantly increased (P < 0.01) with unchanged mean slopes of Vo(2)-PVA linear relations. Pretreatment with the selective beta(1)-blocker landiolol (10 microM) blocked these effects of SNJ perfusion. There were no significant differences in mean basal metabolic oxygen consumption among normal, 40 microM SNJ, and 10 microM landiolol + 40 microM SNJ groups. Our results indicate that water-soluble SNJ exerted positive actions on mechanical work and energetics mediated via beta(1)-adrenergic receptors associated with the enhancement of total Ca(2+) handling in excitation-contraction coupling and with unchanged contractile efficiency. In clinical settings, this pharmacological action of SNJ is beneficial as an additive agent for cardioplegia.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00153.2010DOI Listing

Publication Analysis

Top Keywords

calpain inhibitor
12
mechanical work
12
work energetics
12
total ca2+
12
ca2+ handling
12
microm snj
12
snj
9
inhibitor snj-1945
8
left ventricular
8
ventricular mechanical
8

Similar Publications

During cell invasion, large Extracellular Vesicle (lEV) release from host cells was dose-dependently triggered by Trypanosoma cruzi metacyclic trypomastigotes (Mtr). This lEV release was inhibited when IP-mediated Ca exit from the ER and further Ca entry from plasma membrane channels was blocked, but whilst any store-independent Ca entry (SICE) could continue unabated. That lEV release was equally inhibited if all entry from external sources was blocked by chelation of external Ca points to the major contributor to Mtr-triggered host cell lEV release being IP/store-mediated Ca release, SICE playing a minor role.

View Article and Find Full Text PDF

Susceptibility of Axenic Amastigotes to the Calpain Inhibitor MDL28170.

Trop Med Infect Dis

October 2024

Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.

Leishmaniasis encompasses a group of neglected diseases caused by flagellated protozoa belonging to the genus, associated with high morbidity and mortality. The search for compounds with anti- activity that exhibit lower toxicity and can overcome the emergence of resistant strains remains a significant goal. In this context, the calpain inhibitor MDL28170 has previously demonstrated deleterious effects against promastigote forms of , which led us to investigate its role on axenic amastigote forms.

View Article and Find Full Text PDF

Neutrophil elastase activates macrophage calpain as a mechanism for phagocytic failure.

Am J Physiol Lung Cell Mol Physiol

January 2025

Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, United States.

Neutrophil elastase (NE), elevated in the cystic fibrosis (CF) airway, causes macrophage phagocytic failure. We previously reported that NE increases the release of protease calcium ion-dependent papain-like cysteine protease-2 (Calpain-2) in macrophages. We hypothesized that NE mediates macrophage failure through activation of Calpains.

View Article and Find Full Text PDF

Inhibition of calpain reduces oxidative stress and attenuates pyroptosis and ferroptosis in Clostridium perfringens Beta-1 toxin-induced macrophages.

Microbiol Res

December 2024

Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China. Electronic address:

Clostridium perfringens Beta-1 toxin (CPB1) is a lethal toxin, which can lead to necrotic enteritis, but the pathological mechanism has not been elucidated. We investigated whether reactive oxygen species (ROS) participated in CPB1-induced pyroptosis and ferroptosis, and investigated the effects of calpain on CPB1-induced oxidative stress and inflammation. Scavenging ROS by N-Acetyl-L cysteine (NAC) led to the reduction of ROS, inhibited the death of macrophages, cytoplasmic swelling and membrane rupture, the expression of pyroptosis-related proteins and proinflammatory factor, while increased the expression of anti-inflammatory factors in cells treated with rCPB1.

View Article and Find Full Text PDF

Calpain-1 Up-Regulation Promotes Bleomycin-Induced Pulmonary Fibrosis by Activating Ferroptosis.

Am J Pathol

December 2024

Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal disease. Calpain-1 is an effective therapeutic target for vascular endothelial dysfunction and pulmonary hypertension. However, the role of calpain-1 in bleomycin (BLM)-induced IPF has not been defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!