Reactive molecules have diverse effects on cells and contribute to several pathological conditions. Cells have evolved complex protective systems to neutralize these molecules and restore redox homeostasis. Previously, we showed that association of nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (NRF2) with the nuclear matrix protein NRP/B was essential for the transcriptional activity of NRF2 target genes in tumor cells. The present study demonstrates the molecular mechanism by which NRP/B, via NRF2, modulates the transcriptional activity of antioxidant response element (ARE)-driven genes. NRP/B is localized in the nucleus of primary brain tissue and human neuroblastoma (SH-SY5Y) cells. Treatment with hydrogen peroxide (H(2)O(2)) enhances the nuclear colocalization of NRF2 and NRP/B and induces heme oxygenase 1 (HO1). Treatment of NRP/B or NRF2 knockdowns with H(2)O(2) induced apoptosis. Co-expression of NRF2 with members of the Kelch protein family, NRP/B, MAYVEN, or MAYVEN-related protein 2 (MRP2), revealed that the NRF2-NRP/B complex is important for the transcriptional activity of ARE-driven genes HO1 and NAD(P)H:quinine oxidoreductase 1 (NQO1). NRP/B interaction with Nrf2 was mapped to NRF2 ECH homology 4 (Neh4)/Neh5 regions of NRF2. NRP/B mutations that resulted in low binding affinity to NRF2 were unable to activate NRF2-modulated transcriptional activity of the ARE-driven genes, HO1 and NQO1. Thus, the interaction of NRP/B with the Neh4/Neh5 domains of NRF2 is indispensable for activation of NRF2-mediated ARE-driven antioxidant and detoxifying genes that confer cellular defense against oxidative stress-induced damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924028PMC
http://dx.doi.org/10.1074/jbc.M109.095786DOI Listing

Publication Analysis

Top Keywords

transcriptional activity
16
are-driven genes
12
nrf2
11
nrp/b
10
nuclear matrix
8
matrix protein
8
protein nrp/b
8
nuclear factor
8
nrp/b nrf2
8
nrf2 nrp/b
8

Similar Publications

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.

View Article and Find Full Text PDF

Calcineurin inhibitors (CNIs) are indispensable immunosuppressants for transplant recipients and patients with autoimmune diseases, but chronic use causes nephrotoxicity, including kidney fibrosis. Why inhibiting calcineurin, a serine/threonine phosphatase, causes kidney fibrosis remains unknown. We performed single-nucleus RNA sequencing of the kidney from a chronic CNI nephrotoxicity mouse model and found an increased proportion of injured proximal tubule cells, which exhibited altered expression of genes associated with oxidative phosphorylation, cellular senescence and fibrosis.

View Article and Find Full Text PDF

Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!