The activity of the transient receptor potential vanilloid type 1 ion channel (TRPV1) that is expressed by the great majority of polymodal nociceptors is pivotal for the development of inflammatory heat hyperalgesia. The responsiveness of TRPV1 is regulated by a series of intracellular signalling molecules including the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA); increased or decreased PKA activity results in TRPV1 sensitisation or desensitisation, respectively. Activation of the cannabinoid 1 (CB1) receptor that is expressed by the majority of the TRPV1-expressing primary sensory neurons reduces PKA activity. Therefore, here we studied whether activation of the CB1 receptor resulted in reduced TRPV1-mediated responses in cultured rat primary sensory neurons. We found that TRPV1-mediated whole-cell currents were significantly reduced respectively, by 50% and 25% by 10 nM and 30 nM of the endogenous CB1 receptor agonist, anandamide. The PKA inhibitor, H89 (10 microM) also had a significant inhibitory effect on TRPV1-mediated currents ( approximately 70%). These findings suggest that activation of the CB1 receptor can reduce the activity of TRPV1 in primary sensory neurons, and that this inhibitory effect could be mediated through the reduction of PKA-mediated phosphorylation of TRPV1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/APhysiol.97.2010.2.1 | DOI Listing |
J Neurosci
January 2025
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.
View Article and Find Full Text PDFCorticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.
Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
TU Dresden, Carl Gustav Carus Faculty of Medicine, Anesthesiology and Intensive Care Medicine, Clinical Sensing and Monitoring, Dresden, Germany.
Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.
Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!