Genetic factors in chronic pancreatitis; implications for diagnosis, management and prognosis.

Best Pract Res Clin Gastroenterol

Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, The Netherlands.

Published: June 2010

Chronic pancreatitis (CP) is a clinical situation with persisting inflammation leading to destruction of the pancreas ensuing endocrine and exocrine failure. There are 4 subtypes: hereditary, idiopathic, alcoholic and tropical pancreatitis. Genetic factors can explain a significant proportion of CP cases. The PRSS1 gene, encoding cationic trypsinogen, was found to be correlated with hereditary CP. This signalled the extensive search for other candidate genes within the trypsin pathway. Genes like SPINK1 and CTRC are associated with CP and should be considered as important contributing factors rather than causative. The search for candidate genes not part of the trypsin pathway has been less successful and the only gene consistently associated with CP is the Cystic Fibrosis Transmembrane Regulator. In this review we will discuss the various CP subtypes in relation to the respective genetic variants. This review will also address the implications of genetic testing in daily clinical practise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpg.2010.02.001DOI Listing

Publication Analysis

Top Keywords

genetic factors
8
chronic pancreatitis
8
search candidate
8
candidate genes
8
genes trypsin
8
trypsin pathway
8
review will
8
genetic
4
factors chronic
4
pancreatitis implications
4

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!