Dystrophin-associated protein scaffolding in brain requires alpha-dystrobrevin.

Neuroreport

Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.

Published: July 2010

Dystrophin and the alpha-dystrobrevins bind directly to the adapter protein syntrophin to form membrane-associated scaffolds. At the blood-brain barrier, alpha-syntrophin colocalizes with dystrophin and the alpha-dystrobrevins in perivascular glial endfeet and is required for localization of the water channel aquaporin-4. Earlier we have shown that localization of the scaffolding proteins gamma2-syntrophin, alpha-dystrobrevin-2, and dystrophin to glial endfeet is also dependent on the presence of alpha-syntrophin. In this study, we show that the expression levels of alpha-syntrophin, gamma2-syntrophin, and dystrophin at the blood-brain barrier are reduced in alpha-dystrobrevin-null mice. This is the first demonstration in which assembly of an astroglial protein scaffold containing syntrophin and dystrophin in perivascular astrocytes is dependent on the presence of alpha-dystrobrevin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889226PMC
http://dx.doi.org/10.1097/WNR.0b013e32833b0a3bDOI Listing

Publication Analysis

Top Keywords

dystrophin alpha-dystrobrevins
8
blood-brain barrier
8
glial endfeet
8
dependent presence
8
dystrophin
5
dystrophin-associated protein
4
protein scaffolding
4
scaffolding brain
4
brain requires
4
requires alpha-dystrobrevin
4

Similar Publications

The extracellular matrix (ECM) of the cerebral vasculature provides a pathway for the flow of interstitial fluid (ISF) and solutes out of the brain by intramural periarterial drainage (IPAD). Failure of IPAD leads to protein elimination failure arteriopathies such as cerebral amyloid angiopathy (CAA). The ECM consists of a complex network of glycoproteins and proteoglycans that form distinct basement membranes (BM) around different vascular cell types.

View Article and Find Full Text PDF

Dystrophin-associated protein scaffolding in brain requires alpha-dystrobrevin.

Neuroreport

July 2010

Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.

Dystrophin and the alpha-dystrobrevins bind directly to the adapter protein syntrophin to form membrane-associated scaffolds. At the blood-brain barrier, alpha-syntrophin colocalizes with dystrophin and the alpha-dystrobrevins in perivascular glial endfeet and is required for localization of the water channel aquaporin-4. Earlier we have shown that localization of the scaffolding proteins gamma2-syntrophin, alpha-dystrobrevin-2, and dystrophin to glial endfeet is also dependent on the presence of alpha-syntrophin.

View Article and Find Full Text PDF

Objective: Dystrophins, utrophins, and their associated proteins are involved in structural and signaling roles in nonmuscle tissues; however, description of these proteins in neutrophils remained unexplored. Therefore we characterize the pattern expression, and the cellular distribution of dystrophin and utrophin gene products and dystrophin-associated proteins (i.e.

View Article and Find Full Text PDF

Upon activation with physiological stimuli, human platelets undergo morphological changes, centralizing their organelles and secreting effector molecules at the site of vascular injury. Previous studies have indicated that the actin filaments and microtubules of suspension-activated platelets play a critical role in granule movement and exocytosis; however, the participation of these cytoskeleton elements in adhered platelets remains unexplored. alpha- and beta-dystrobrevin members of the dystrophin-associated protein complex in muscle and non-muscle cells have been described as motor protein receptors that might participate in the transport of cellular components in neurons.

View Article and Find Full Text PDF

Background: The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain) is its distant relative, alpha-dystrobrevin. The alpha-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!