Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The use of mesenchymal stem cells (MSCs) to treat osteochondral defects caused by sports injuries or disease is of particular interest. However, there is a lack of studies in large-animal models examining the benefits of chondrogenic predifferentiation in vitro for repair of chronic osteochondral defects.
Hypothesis: Chondrogenic in vitro predifferentiation of autologous MSCs embedded in a collagen I hydrogel currently in clinical trial use for matrix-associated autologous chondrocyte transplantation facilitates the regeneration of a chronic osteochondral defect in an ovine stifle joint.
Study Design: Controlled laboratory study.
Methods: The optimal predifferentiation period of ovine MSCs within the type I collagen hydrogel in vitro was defined by assessment of several cellular and molecular biological parameters. For the animal study, osteochondral lesions (diameter 7 mm) were created at the medial femoral condyles of the hind legs in 10 merino sheep. To achieve a chronic defect model, implantation of the ovine MSCs/hydrogel constructs was not performed until 6 weeks after defect creation. The 40 defects were divided into 4 treatment groups: (1) chondrogenically predifferentiated ovine MSC/hydrogel constructs (preMSC-gels), (2) undifferentiated ovine MSC/hydrogel constructs (unMSC-gels), (3) cell-free collagen hydrogels (CF-gels), and (4) untreated controls (UCs). Evaluation followed after 6 months.
Results: With regard to proteoglycan content, cell count, gel contraction, apoptosis, compressive properties, and progress of chondrogenic differentiation, a differentiation period of 14 days in vitro was considered optimal. After 6 months in vivo, the defects treated with preMSC-gels showed significantly better histologic scores with morphologic characteristics of hyaline cartilage such as columnarization and presence of collagen type II.
Conclusion: Matrix-associated autologous chondrocyte transplantation with predifferentiated MSCs may be a promising approach for repair of focal, chronic osteochondral defects.
Clinical Relevance: The results suggest an encouraging method for future treatment of focal osteochondral defects to prevent progression to osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0363546510365296 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!