The active -OH group in fullerol (F-ol) could react with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form F-ol-(FITC)(n), which could emit room temperature phosphorescence (RTP) signal of F-ol and FITC on acetate cellulose membrane (ACM), respectively. Their RTP signals were enhanced by N,N-dimethylaniline (DMA). The labeling reaction between the -NCS group of FITC in DMA-F-ol-(FITC)(n) and the -NH2 group in wheat germ agglutinin (WGA) produced DMA-F-ol-(FITC)(n)-WGA, which could further take affinity adsorption (AA) reaction with bioactive substances (BS), such as glucose and alkaline phosphatase (AP), to produce DMA-F-ol-(FITC)(n)-WGA-BS. Both of these two products could maintain the good RTP characteristics of F-ol and FITC. Based on the facts above, a new phosphorescent labeling reagent, DMA-F-ol-FITC, was developed, and a new affinity adsorption solid substrate room temperature phosphorimetry (AASSRTP) for the determination of BS was established. This method was applied to the determination of BS in human serum and the diagnosis of diseases, with the results agreeing very well with those of enzyme-linked immunosorbent assay (ELISA). The mechanism of DMA-F-ol-(FITC)(n) labeling of WGA and AASSRTP for the determination of BS is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2010.05.018 | DOI Listing |
Inorg Chem
December 2024
The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia.
A series of electrochemiluminescent (ECL) iridium(III) complexes with the general formula [Ir(CN)(pim)] (where CN = cyclometalating ligands 2-phenylpyridinato (ppy) or 2-(2,4-difluorophenyl)pyridinato (dFppy), and pim = 2-(2-pyridyl)imidazole) have been synthesized. In each case, the 2-(2-pyridyl)imidazole ancillary ligand has been modified to facilitate bioconjugation and ECL label development. All complexes exhibit blue-shifted optical and electro-generated phosphorescence relative to the archetypal complex [Ir(ppy)(bpy)] (bpy = 2,2'-bipyridine).
View Article and Find Full Text PDFChemistry
October 2024
School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
Triphenylmethyl-based compounds such as rhodamines and fluoresceine representing an old and well-known class of triphenylmethane dyes, are widely used in fluorescent labeling of bioimaging. Inspired by ultralong room temperature phosphorescence of triphenylphosphine derivatives, herein we report a methoxy substituted triarylmethanol ((4-methoxyphenyl)diphenylmethanol, LJW-1) exhibits ultralong room temperature phosphorescence (RTP) under ambient condition with afterglows of about 7 seconds. Its multiple C-H ⋅ ⋅ ⋅ π intermolecular interactions, C-H ⋅ ⋅ ⋅ O intermolecular interactions, hydrogen bond and π-π interactions are beneficial for forming rigid environment in the aggregated state which is evidently an important factor in the appearance of excellent RTP.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China.
Controlling multicolor persistent room-temperature phosphorescence (RTP) through photoirradiation holds fundamental significance but remains a significant challenge. In this study, we engineered a wavelength-selective photoresponsive system utilizing the Förster resonance energy transfer strategy. This system integrates a photoactivated long-lived luminescent material as the energy donor with a fluorescent photoswitch as the energy acceptor, facilitating programmable persistent luminescence switches.
View Article and Find Full Text PDFAdv Mater
October 2024
State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China.
Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported.
View Article and Find Full Text PDFAdv Mater
October 2024
School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China.
Phosphorescent supramolecular hydrogels are currently a prevalent topic for their great promise in various photonic applications. Herein, an efficient near-infrared (NIR) phosphorescence supramolecular hydrogel is reported via the hierarchical assembly strategy in aqueous solution, which is fabricated from amphiphilic bromonaphthalimide pyridinium derivative (G), exfoliated Laponite (LP) nanosheets, and polymeric polyacrylamide (PAAm). Initially, G spontaneously self-aggregates into spherical nanoparticles covered with positively charged pyridinium units and emits single fluorescence at 410 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!