Unlabelled: The role of differential selection in determining the geographic distribution of genotypes in hybrid systems has long been discussed, but not settled. The present study aims to asses the importance of selection in structuring all-hybrid Pelophylax esculentus populations. These populations, in which the parental species (P. lessonae with genotype LL and P. ridibundus with genotype RR) are absent, have pond-specific proportions of diploid (LR) and triploid (LLR and LRR) genotypes.
Results: With data from 12 Swedish ponds, we first show that in spite of significant changes in genotype proportions over time, the most extreme ponds retained their differences over a six year study period. The uneven distribution of genotypes among ponds could be a consequence of differential selection varying among ponds (selection hypothesis), or, alternatively, of different gamete production patterns among ponds (gamete pattern hypothesis). The selection hypothesis was tested in adults by a six year mark-recapture study in all 12 ponds. As the relative survival and proportion of LLR, LR and LRR did not correlate within ponds, this study provided no evidence for the selection hypothesis in adults. Then, both hypotheses were tested simultaneously in juvenile stages (eggs, tadpoles, metamorphs and one year old froglets) in three of the ponds. A gradual approach to adult genotype proportions through successive stages would support the selection hypotheses, whereas the presence of adult genotype proportions already at the egg stage would support the gamete pattern hypothesis. The result was a weak preference for the gamete pattern hypothesis.
Conclusions: These results thus suggest that selection is of little importance for shaping genotype distributions of all-hybrid populations of P. esculentus, but further studies are needed for confirmation. Moreover, the study provided valuable data on genotype-specific body lengths, adult survival and sex ratios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902419 | PMC |
http://dx.doi.org/10.1186/1472-6785-10-14 | DOI Listing |
Ticks Tick Borne Dis
January 2025
INRAE, Oniris, BIOEPAR, 44300 Nantes, France. Electronic address:
Equine piroplasmosis is a worldwide tick-borne disease caused by the parasites Theileria equi sensu lato and Babesia caballi, with significant economic and sanitary consequences. These two parasites are genetically variable, with a potential impact on diagnostic accuracy. Our study aimed to evaluate the frequency of asymptomatic carriers of these parasites in France and describe the circulating genotypes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
Alzheimers Dement
December 2024
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: The H1/H2 haplotype on 17q21.31 represent the foremost genetic factor contributing to the risk of progressive supranuclear palsy (PSP). Various structural forms of 17q21.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Departments of Psychiatry and Behavioral Sciences, Neurology, and Epidemiology, University of California San Francisco, San Francisco, CA, USA.
Background: Integrating clinical and genetic risk factors for dementia in a precision medicine framework can play a crucial role in primary prevention. Here, we ascertained the proportion of individuals who are at heightened risk of developing dementia based on their family history, genetic, and clinical risk factors and evaluated how the additive burden of these risk indicators is associated with incident dementia.
Method: We analyzed longitudinal data from 3,395 diverse older adults, dementia-free at baseline with follow-up and whole genome sequencing, enrolled in the National Alzheimer's Co-coordinating Center and the Alzheimer's Disease Neuroimaging Initiative (Table 1).
Alzheimers Dement
December 2024
Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
Background: Many independent studies have found rare variants associated with AD. Current gene-based tests for rare-variants generally consider the impact of low-frequency coding variants as an independent effect from the common regulatory variants that surround them. In this work, we propose to increase the statistical power of kernel-based rare-variant association tests by accounting for the surrounding cis-regulatory variants' effects on gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!