Background: Identification of genes involved in adaptation and speciation by targeting specific genes of interest has become a plausible strategy also for non-model organisms. We investigated the potential utility of available sequenced fish genomes to develop microsatellite (cf. simple sequence repeat, SSR) markers for functionally important genes in nine-spined sticklebacks (Pungitius pungitius), as well as cross-species transferability of SSR primers from three-spined (Gasterosteus aculeatus) to nine-spined sticklebacks. In addition, we examined the patterns and degree of SSR conservation between these species using their aligned sequences.
Results: Cross-species amplification success was lower for SSR markers located in or around functionally important genes (27 out of 158) than for those randomly derived from genomic (35 out of 101) and cDNA (35 out of 87) libraries. Polymorphism was observed at a large proportion (65%) of the cross-amplified loci independently of SSR type. To develop SSR markers for functionally important genes in nine-spined sticklebacks, SSR locations were surveyed in or around 67 target genes based on the three-spined stickleback genome and these regions were sequenced with primers designed from conserved sequences in sequenced fish genomes. Out of the 81 SSRs identified in the sequenced regions (44,084 bp), 57 exhibited the same motifs at the same locations as in the three-spined stickleback. Di- and trinucleotide SSRs appeared to be highly conserved whereas mononucleotide SSRs were less so. Species-specific primers were designed to amplify 58 SSRs using the sequences of nine-spined sticklebacks.
Conclusions: Our results demonstrated that a large proportion of SSRs are conserved in the species that have diverged more than 10 million years ago. Therefore, the three-spined stickleback genome can be used to predict SSR locations in the nine-spined stickleback genome. While cross-species utility of SSR primers is limited due to low amplification success, SSR markers can be developed for target genes and genomic regions using our approach, which should be also applicable to other non-model organisms. The SSR markers developed in this study should be useful for identification of genes responsible for phenotypic variation and adaptive divergence of nine-spined stickleback populations, as well as for constructing comparative gene maps of nine-spined and three-spined sticklebacks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891615 | PMC |
http://dx.doi.org/10.1186/1471-2164-11-334 | DOI Listing |
Plants (Basel)
January 2025
Maize Research Institute Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia.
Driven by the growing demands for plant-based protein in Europe and attempts of soybean breeding programs to improve the productivity of created varieties, this study aimed to enhance genetic resource utilization efficiency by providing information relevant to well-focused breeding targets. A set of 90 accessions was subjected to a comprehensive assessment of genetic diversity in a soybean working collection using three marker types: morphological descriptors, agronomic traits, and SSRs. Genotype grouping patterns varied among the markers, displaying the best congruence with pedigree data and maturity for SSRs and agronomic traits, respectively.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari-Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy.
subsp. (), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
Background/objectives: Chrysanthemum (), a key ornamental and medicinal plant, presents challenges in cultivar identification due to high phenotypic similarity and environmental influences. This study assessed the genetic diversity and discrimination of 126 spray-type chrysanthemum cultivars.
Methods: About twenty-three simple sequence repeat (SSR) markers were screened for the discrimination of 126 cultivars, among which six SSR markers showed polymorphic fragments.
Genes (Basel)
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Background/objectives: The Pacific abalone originated in cold waters and is an economically important aquaculture shellfish in China. Our goal was to clarify the current status of the genetic structure of Pacific abalone in China.
Methods: In this study, eighteen polymorphic EST-SSR loci were successfully developed based on the hemolymph transcriptome data of Pacific abalone, and thirteen highly polymorphic EST-SSR loci were selected for the genetic variation analysis of the six populations collected.
J Microbiol Biotechnol
December 2024
Department of Life science, Chung-Ang University, Seoul 06974, Republic of Korea.
Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of genius, one of notorious pest species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!