SUMMARY Taxonomy: Peach latent mosaic viroid (PLMVd) is the type species of the genus Pelamoviroid within the family Avsunviroidae of chloroplastic viroids with hammerhead ribozymes. Physical properties: A small circular RNA of 336-351 nt (differences in size result from the absence or presence of certain insertions) adopting a branched conformation stabilized by a pseudoknot between two kissing loops. This particular conformation is most likely responsible for the insolubility of PLMVd in highly saline conditions (in which other viroids adopting a rod-like conformation are soluble). Both polarity strands are able to form hammerhead structures and to self-cleave during replication as predicted by these ribozymes. Biological properties: Although most infections occur without conspicuous symptoms, certain PLMVd isolates induce leaf mosaics, blotches and in the most extreme cases albinism (peach calico, PC), flower streaking, delays in foliation, flowering and ripening, deformations and decolorations of fruits, which usually present cracked sutures and enlarged roundish stones, bud necrosis, stem pitting and premature ageing of the trees, which also adopt a characteristic growing pattern (open habit). The molecular determinant for PC has been mapped at a 12-14-nt insertion that folds into a hairpin capped by a U-rich loop present only in certain variants. PLMVd is horizontally transmitted by the propagation of infected buds and to a lesser extent by pruning tools and aphids, but not by pollen; the viroid is not vertically transmitted through seed. Interesting features: This provides a suitable system for studying how a minimal non-protein-coding catalytic RNA replicates (subverting a DNA-dependent RNA polymerase to transcribe an RNA template), moves, interferes with the metabolism of its host (inciting specific symptoms and a defensive RNA silencing response) and evolves following a quasi-species model characterized by a complex spectrum of variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1364-3703.2006.00332.x | DOI Listing |
Anal Chem
October 2024
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
glycosylation is closely linked to a wide range of biological functions in organisms. Owing to the constriction of awful crystals formed by conventional MALDI matrices and the extremely inferior ionization efficiency of glycans, the traditional direct detection of glycans by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been gradually replaced by postderivatization detection using reactive matrices. Nevertheless, the laborious identification of complex spectral peaks remains the major difficulty in glycan profiling.
View Article and Find Full Text PDFArch Virol
July 2024
INRAE, Univ. Bordeaux, UMR BFP, 33140, Villenave d'Ornon, France.
The complete genome sequences of two poorly studied Prunus-infecting nepoviruses, apricot latent ringspot virus (ALRSV) and myrobalan latent ringspot virus (MLRSV) were determined, confirming that they are members of subgroup C. Serological, biological, and molecular data, in particular a low level (58.8%) of amino acid sequence identity in the coat protein, suggest that ALRSV and MLRSV should be considered taxonomically distinct.
View Article and Find Full Text PDFPeerJ
May 2024
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China.
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding.
View Article and Find Full Text PDFPlant Dis
July 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Peach latent mosaic viroid (PLMVd) infects peach trees in China and induces a conspicuous albino phenotype (peach calico, PC) that is closely associated with variants containing a 12-to-14 nucleotide hairpin insertion capped by a U-rich loop. Initially, PC disease distribution was limited to parts of Italy, and it was first detected in the field in China in 2019. To explore the molecular and biological characteristics of PLMVd PC isolates in peach in China, we conducted a comprehensive analysis of disease phenotype development and investigated the data-associated pathogenicity and in vivo dynamics of the Chinese isolate PC-A2 using slash-inoculation into GF-305 peach seedlings.
View Article and Find Full Text PDFPeach latent mosaic viroid (PLMVd) is an important pathogen that causes disease in peaches. Control of this viroid remains problematic because most PLMVd variants are symptomless, and although there are many detection tests in use, the reliability of PCR-based methods is compromised by the complex, branched secondary RNA structure of the viroid and its genetic diversity. In this study, a duplex RT-qPCR method was developed and validated against two previously published single RT-qPCRs, which were potentially able to detect all known PLMVd variants when used in tandem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!