SUMMARY Fungal-induced inaccessibility in oat to Blumeria graminis requires active cell processes. These are reiterative de novo cell processes involved in inherent penetration resistance. Therefore, induced inaccessibility may well involve cellular memory of the initial attack. Phenylpropanoid biosynthesis inhibitors (AOPP and OH-PAS) and phosphate scavengers (DDG and d-mannose) strongly suppressed induced inaccessibility, but silicon nutrition had no effect. Induced accessibility was modulated by the presence of fungal haustoria inside cells. Haustoria actively suppress or reprogram infected plant cells toward a constant state of penetration susceptibility. Neither inhibitor treatments nor silicon nutrition affected fungal-induced accessibility.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1364-3703.2005.00315.xDOI Listing

Publication Analysis

Top Keywords

induced inaccessibility
12
silicon nutrition
12
cell processes
8
induced
4
inaccessibility accessibility
4
accessibility oat
4
oat powdery
4
powdery mildew
4
mildew system
4
system insights
4

Similar Publications

Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.

The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.

View Article and Find Full Text PDF

IRF1 cooperates with ISGF3 or GAF to form innate immune de novo enhancers in macrophages.

Sci Signal

January 2025

Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.

Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers.

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Bariatric surgery has been shown to significantly affect type 2 diabetes mellitus (T2DM) remission, particularly in obese individuals. This systematic review aims to evaluate the effectiveness of bariatric surgical interventions in inducing remission of T2DM as well as to identify factors influencing surgical outcomes. The systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

View Article and Find Full Text PDF

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!