Since decades, scientific change has been interpreted in the light of paradigm shifts and scientific revolutions. The Kuhnian interpretation of scientific change however is now more and more confronted with non-disciplinary thinking in both, science and studies on science. This paper explores how research in biomedicine and the life sciences can be characterized by different rationalities, sometimes converging, sometimes contradictory, all present at the same time with varying ways of influence, impact, and visibility. In general, the rationality of objects is generated by fitting new objects and findings into a new experimental context. The rationality of hypotheses is a move towards the construction of novel explanatory tools and models. This is often inseparable meshing with the third, the technological rationality, in which a technology-driven, self-supporting and sometimes self-referential refinement of methods and technologies comes along with an extension into other fields. During the second and the third phase, the new and emerging fields tend to expand their explanatory reach not only across disciplinary boundaries but also into the social sphere, creating what has been characterized as "exceptionalism" (e.g. genetic exceptionalism or neuro-exceptionalism). Finally, recent biomedicine and life-sciences reach a level in which experimental work becomes more and more data-driven because the technologically constructed experimental systems generate a plethora of findings (data) which at some point start to blur the original hypotheses. For the rationality of information the materiality of research practices becomes secondary and research objects are more and more getting out of sight. Finally, the credibility of science as a practice becomes more and more dependent on consensus about the applicability and relevance of its results. The rationality of interest (and accountability) has become more and more characteristic for a research process which is no longer primarily determined by the desire for knowledge but by the desire for relevance. This paper explores in which ways object-driven and hypotheses-driven experimental life-sciences transformed into domains of experimental research evolving in a technologically constructed, data-driven environment in which they are subjected to constant morphing due to the forces of different rationalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bewi.200901351 | DOI Listing |
AIDS Res Ther
January 2025
Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
The global HIV epidemic remains a major public health challenge, with DTG playing a key role in ART regimens due to its efficacy and tolerability. This study evaluated virological outcomes and resistance mutations in patients on DTG in Mozambique through a retrospective cohort study in seven DREAM centers. Data from 29,601 patients (98.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China. Electronic address:
Understanding dysregulated genes and pathways in cancer is critical for precision oncology. Integrating mass spectrometry-based proteomic data with transcriptomic data presents unique opportunities for systematic analyses of dysregulated genes and pathways in pan-cancer. Here, we compiled a comprehensive set of datasets, encompassing proteomic data from 2,404 samples and transcriptomic data from 7,752 samples across 13 cancer types.
View Article and Find Full Text PDFFront Sociol
January 2025
Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
Dominant narratives of solid-organ transplantation foreground vocabularies of gratitude. Solid-organ transplantation is often celebrated in biomedicine for its high-tech innovation and specialization. But transplantation also includes the organizations that oversee the distribution of donated organs to potential recipients who disproportionately outnumber available organs.
View Article and Find Full Text PDFFront Genet
January 2025
Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!