Activation of the corticotropin-releasing factor-1 (CRF-1) receptor in the anterolateral BNST (BSTal), a key subdivision of the extended amygdala, elicits opiate-seeking behavior exacerbated by stress. However, it is unknown whether the presence of CRF-1 affects expression of the μ-opioid receptor (μ-OR) in the many GABAergic BSTal neurons implicated in the stress response. We hypothesized that deletion of the CRF-1 receptor gene would alter the density and/or subcellular distribution of μ-ORs in GABAergic neurons of the BSTal. We used electron microscopy to quantitatively examine μ-OR immunogold and γ-aminobutyric acid (GABA) immunoperoxidase labeling in the BSTal of CRFr-1 knockout (KO) compared to wild-type (WT) mice. To assess regional specificity, we examined μ-OR distribution in dorsal striatum. The μ-ORs in each region were predominantly localized in dendrites, many of which were GABA-immunoreactive. Significantly, more cytoplasmic μ-OR gold particles per dendritic area were observed selectively in GABA-containing dendrites of the BSTal, but not of the dorsal striatum, in KO compared to WT mice. In both regions, however, significantly fewer GABA-immunoreactive axon terminals were present in KO compared to WT mice. Our results suggest that the absence of CRF-1 results in enhanced expression and/or dendritic trafficking of μ-ORs in inhibitory BSTal neurons. They also suggest that the expression of CRF-1 is a critical determinant of the availability of GABA in functionally diverse brain regions. These findings underscore the complex interplay between CRF, opioid, and GABA systems in limbic and striatal regions and have implications for the role of CRF-1 in influencing the pharmacological effects of opiates active at μ-ORs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955181 | PMC |
http://dx.doi.org/10.1002/syn.20810 | DOI Listing |
Biol Psychiatry
January 2025
Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, United States. Electronic address:
Background: Innovative treatments for paranoia, which significantly impairs social functioning in schizophrenia (SCZ), are urgently needed. The pathophysiology of paranoia implicates the amygdala-prefrontal (PFC) circuits; thus, this study systematically investigated whether transcranial direct current stimulation (tDCS) to the ventrolateral PFC can attenuate paranoia and improve social functioning in SCZ.
Methods: A double-blind, within-subjects, crossover design was used to compare active vs.
medRxiv
January 2025
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095.
Background: Electroconvulsive therapy (ECT) is a well-established and effective treatment for severe depression and other conditions. Though ECT induces a generalized seizure, it is unclear why seizures are therapeutic. This study analyzed relationships between pre-treatment brain morphology, stimulation dose, and seizure duration to better understand ECT-induced seizures.
View Article and Find Full Text PDFBrain Behav
January 2025
School of Psychology, Shandong Second Medical University, Weifang, Shandong, People's Republic of China.
Background: Post-traumatic stress disorder (PTSD) is a complex psychiatric condition that emerges following exposure to trauma and significantly affects daily functioning. Current research is focused on identifying effective treatments for PTSD. Advances in bioinformatics provide opportunities to elucidate the underlying mechanisms of PTSD.
View Article and Find Full Text PDFWorld J Biol Psychiatry
February 2025
Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, USA.
Objective: Facial emotion recognition is central to successful social interaction. People with autism spectrum disorder (ASD) have difficulties in this area. However, neuroimaging evidence on facial emotion processing in ASD has been diverse.
View Article and Find Full Text PDFAm J Psychiatry
January 2025
Department of Neuroscience, Medical University of South Carolina, Charleston (Kuhn, Crow, Walterhouse, Chalhoub, Dereschewitz, Roberts, Kalivas); School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy (Cannella, Lunerti, Ciccocioppo); Interdisciplinary Ph.D. Program in Biostatistics (Gupta) and Department of Biomedical Informatics (Gupta, Allen, Chung), and Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Ohio State University, Columbus (Gupta, Allen, Chung); Department of Internal Medicine, Wake Forest University, Winston-Salem, NC (Cockerham, Beeson, Solberg Woods); Department of Psychology, Jacksonville State University, Jacksonville, AL (Nall); Institute for Genomic Medicine, University of California San Diego, La Jolla (Palmer); School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland (Hardiman).
Objective: The behavioral and diagnostic heterogeneity within the opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting the translational relevance of the mechanistic research that is conducted in experimental animals. The authors hypothesized that a nonlinear clustering of OUD-like behavioral traits would capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles.
Methods: Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!