Recent studies suggest that M. tuberculosis lineage and host genetics interact to impact how active tuberculosis presents clinically. We determined the phylogenetic lineages of M. tuberculosis isolates from participants enrolled in the Tuberculosis Trials Consortium Study 28, conducted in Brazil, Canada, South Africa, Spain, Uganda and the United States, and secondarily explored the relationship between lineage, clinical presentation and response to treatment. Large sequence polymorphisms and single nucleotide polymorphisms were analyzed to determine lineage and sublineage of isolates. Of 306 isolates genotyped, 246 (80.4%) belonged to the Euro-American lineage, with sublineage 724 predominating at African sites (99/192, 51.5%), and the Euro-American strains other than 724 predominating at non-African sites (89/114, 78.1%). Uneven distribution of lineages across regions limited our ability to discern significant associations, nonetheless, in univariate analyses, Euro-American sublineage 724 was associated with more severe disease at baseline, and along with the East Asian lineage was associated with lower bacteriologic conversion after 8 weeks of treatment. Disease presentation and response to drug treatment varied by lineage, but these associations were no longer statistically significant after adjustment for other variables associated with week-8 culture status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873999 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010753 | PLOS |
Front Microbiol
January 2025
National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India.
Pyrazinamide (PZA) is a key first-line antituberculosis drug that plays an important role in eradicating persister (TB) bacilli and shortening the duration of tuberculosis treatment. However, PZA-resistance is on the rise, particularly among persons with multidrug-resistant (MDR) tuberculosis. This nationwide study was conducted to explore the prevalence of mutations conferring PZA resistance, catalogue mutation diversity, investigate the associations of PZA resistance with specific lineages, examine co-resistance to 13 first- and second-line drugs, and evaluate the diagnostic accuracy of sequencing A and D genes for predicting PZA resistance.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China.
Background: Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB), However, limited research exists on their clinical and strain characteristics. This study aims to investigate the correlation between these factors in TB-DM patients in Changping District. METHODS: Whole genome sequencing (WGS) and drug susceptibility tests (DST) were performed on culture-positive strains.
View Article and Find Full Text PDFNPJ Antimicrob Resist
December 2024
Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA.
Tuberculosis (TB) killed approximately 1.3 million people in 2022 and remains a leading cause of death from the bacteria Mycobacterium tuberculosis (M.tb); this number of deaths was surpassed only by COVID-19, caused by the SARS-CoV-2 virus.
View Article and Find Full Text PDFStructure
January 2025
Department of Structural and Molecular Biology, University College London, London, UK. Electronic address:
ATP-pyrophosphatases (ATP-PPases) are the most primordial lineage of the large and diverse HUP (high-motif proteins, universal stress proteins, ATP-pyrophosphatase) superfamily. There are four different ATP-PPase substrate-specificity groups (SSGs), and members of each group show considerable sequence variation across the domains of life despite sharing the same catalytic function. Owing to the expansion in the number of ATP-PPase domain structures from advances in protein structure prediction by AlphaFold2 (AF2), we have characterized the two most populated ATP-PPase SSGs, the nicotinamide adenine dinucleotide synthases (NADSs) and guanosine monophosphate synthases (GMPSs).
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
Background: India has the highest global burden of human tuberculosis (TB) and the largest cattle herd with endemic bovine TB (bTB). However, the extent of cross-species transmission and the zoonotic spillover risk, including drug-resistant complex (MTBC) strains circulating in cattle, remain uncharacterized.
Methods: To address this major knowledge gap, we investigated tissue samples from 500 apparently healthy cattle at a slaughterhouse in Chennai, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!