Hippocampal neurons show a strong modulation by theta frequency oscillations. This modulation is thought to be important not only for temporal encoding and decoding of information in the hippocampal system, but also for temporal ordering of neuronal activities on timescales at which physiological mechanisms of synaptic plasticity operate. The medial entorhinal cortex (MEC), one of the two major cortical inputs to the hippocampus, is known to show theta modulation. Here, we show that the local field potentials (LFPs) in the other major cortical input to the hippocampus, the lateral entorhinal cortex (LEC), show weaker theta oscillations than those shown in the MEC. Neurons in LEC also show weaker theta modulation than that of neurons in MEC. These findings suggest that LEC inputs are integrated into hippocampal representations in a qualitatively different manner than the MEC inputs. Furthermore, MEC grid cells increase the scale of their periodic spatial firing patterns along the dorsoventral axis, corresponding to the increasing size of place fields along the septotemporal axis of the hippocampus. We show here a corresponding gradient in the tendency of MEC neural firing to skip alternate theta cycles. We propose a simple model based on interference of delta oscillations with theta oscillations to explain this behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934945PMC
http://dx.doi.org/10.1152/jn.01141.2009DOI Listing

Publication Analysis

Top Keywords

theta modulation
12
lateral entorhinal
8
entorhinal cortex
8
major cortical
8
lec weaker
8
weaker theta
8
theta oscillations
8
theta
7
mec
6
modulation medial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!