AI Article Synopsis

Article Abstract

Substantial data from the cognitive neurosciences point to the importance of bodily processing for the development of a comprehensive theory of the self. A key aspect of the bodily self is self-location, the experience that the self is localized at a specific position in space within one's bodily borders (embodied self-location). Although the neural mechanisms of self-location have been studied by manipulating the spatial location of one's visual perspective during mental imagery, such experiments were conducted in constrained, explicit, and unecological contexts such as explicit instructions in a prone/seated position, although most human interactions occur spontaneously while standing/walking. Using a motor paradigm, we investigated the behavioral and neural mechanisms of spontaneous self-location and mental body transformations during active human interaction. Using own-body imagery using spontaneous and explicit changes in self-location in standing participants, we report that spontaneous interactions with an avatar are neurally indistinguishable from explicit own-body transformation with disembodied self-location but differ from explicit own-body transformation with embodied self-location at 400-600 ms after stimulus onset. We discuss these findings with respect to the neural mechanisms of perspective-taking and self-location in spontaneous human interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632411PMC
http://dx.doi.org/10.1523/JNEUROSCI.3403-09.2010DOI Listing

Publication Analysis

Top Keywords

neural mechanisms
12
self-location
9
mental imagery
8
self-location spontaneous
8
embodied self-location
8
human interaction
8
explicit own-body
8
own-body transformation
8
spontaneous
5
explicit
5

Similar Publications

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.

Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

The Brain's Aging Resting State Functional Connectivity.

J Integr Neurosci

January 2025

Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.

View Article and Find Full Text PDF

Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.

Pharmaceuticals (Basel)

January 2025

Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!