Myoblast fusion is an essential step during myoblast differentiation that remains poorly understood. M-cadherin-dependent pathways that signal through Rac1 GTPase activation via the Rho-guanine nucleotide exchange factor (GEF) Trio are important for myoblast fusion. The ADP-ribosylation factor (ARF)6 GTPase has been shown to bind to Trio and to regulate Rac1 activity. Moreover, Loner/GEP(100)/BRAG2, a GEF of ARF6, has been involved in mammalian and Drosophila myoblast fusion, but the specific role of ARF6 has been not fully analyzed. Here, we show that ARF6 activity is increased at the time of myoblast fusion and is required for its implementation in mouse C2C12 myoblasts. Specifically, at the onset of myoblast fusion, ARF6 is associated with the multiproteic complex that contains M-cadherin, Trio, and Rac1 and accumulates at sites of myoblast fusion. ARF6 silencing inhibits the association of Trio and Rac1 with M-cadherin. Moreover, we demonstrate that ARF6 regulates myoblast fusion through phospholipase D (PLD) activation and phosphatidylinositol 4,5-bis-phosphate production. Together, these data indicate that ARF6 is a critical regulator of C2C12 myoblast fusion and participates in the regulation of PLD activities that trigger both phospholipids production and actin cytoskeleton reorganization at fusion sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903670 | PMC |
http://dx.doi.org/10.1091/mbc.e09-12-1063 | DOI Listing |
Cells
December 2024
Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.
View Article and Find Full Text PDFUnlabelled: Rhabdomyosarcoma (RMS) is a tumor which resembles skeletal muscle. Current treatments are limited to surgery and non-targeted chemotherapy, highlighting the need for alternative therapies. Differentiation therapy uses molecules that act to shift the tumor cells' phenotype from proliferating to differentiated, which in the case of skeletal muscle includes exit from the cell cycle and potentially fusion into myofibers.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Bioengineering, University of California, Berkeley, CA 94720.
Cell-cell fusion is fundamental to developmental processes such as muscle formation, as well as to viral infections that cause pathological syncytia. An essential step in fusion is close membrane apposition, but cell membranes are crowded with proteins, glycoproteins, and glycolipids, all of which must be cleared before a fusion pore can be nucleated. Here, we find that cell surface crowding drastically reduces fusogenicity in multiple systems, independent of the method for driving fusion.
View Article and Find Full Text PDFElife
December 2024
Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin's Z-disk to study skeletal muscle development and remodeling.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!