Our previous studies demonstrate that 17beta-estradiol limits chronic volume overload-induced hypertrophy and improves heart function in ovariectomized rats. One possible cardioprotective mechanism involves the interaction between estrogen, estrogen receptors, and proteins of the extracellular matrix (ECM). The impact of estrogen deficiency and replacement on left ventricular (LV) hypertrophy and ECM protein expression was studied using five female rat groups: intact sham-operated, ovariectomized sham-operated, intact with volume overload, ovariectomized with volume overload, and ovariectomized with volume overload treated with estrogen. After 8 wk, LV protein extracts were evaluated by Western blot analysis for matrix metalloproteinase-2 (MMP-2) and MMP-9, MT1-MMP, tissue inhibitors of MMPs (TIMP)-1, TIMP-2, TIMP-3 and TIMP-4, collagens type I and III, and estrogen receptor alpha and beta expression. MMP proteolytic activity was assessed by zymography. All volume-overloaded groups exhibited LV hypertrophy, which was associated with a loss of interstitial collagen and perivascular fibrosis. After 8 wk of volume overload, 70% of ovariectomized rats developed heart failure, in contrast to only one intact rat. A downregulation of MMP-2, estrogen receptor-alpha (ERalpha), and ERbeta, and upregulation of MMP-9 and MT1-MMP were found in the volume-overloaded hearts of ovariectomized rats. Estrogen treatment improved TIMP-2/MMP-2 and TIMP-1/MMP-9 protein balance, restored ERalpha expression, and prevented MMP-9 activation, perivascular collagen accumulation and development of heart failure. However, estrogen did not fully restore ERbeta expression and did not prevent the increase of MMP-9 expression or loss of interstitial collagen. These results support that estrogen limits undesirable ECM remodeling and LV dilation, in part, through modulation of ECM protein expression in volume-overloaded hearts of ovariectomized rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00162.2010 | DOI Listing |
Biogerontology
January 2025
Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.
Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.
View Article and Find Full Text PDFSci Rep
January 2025
Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China.
Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.
View Article and Find Full Text PDFElife
January 2025
Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.
Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!