High-resolution animal location data are increasingly available, requiring analytical approaches and statistical tools that can accommodate the temporal structure and transient dynamics (non-stationarity) inherent in natural systems. Traditional analyses often assume uncorrelated or weakly correlated temporal structure in the velocity (net displacement) time series constructed using sequential location data. We propose that frequency and time-frequency domain methods, embodied by Fourier and wavelet transforms, can serve as useful probes in early investigations of animal movement data, stimulating new ecological insight and questions. We introduce a novel movement model with time-varying parameters to study these methods in an animal movement context. Simulation studies show that the spectral signature given by these methods provides a useful approach for statistically detecting and characterizing temporal dependency in animal movement data. In addition, our simulations provide a connection between the spectral signatures observed in empirical data with null hypotheses about expected animal activity. Our analyses also show that there is not a specific one-to-one relationship between the spectral signatures and behavior type and that departures from the anticipated signatures are also informative. Box plots of net displacement arranged by time of day and conditioned on common spectral properties can help interpret the spectral signatures of empirical data. The first case study is based on the movement trajectory of a lion (Panthera leo) that shows several characteristic daily activity sequences, including an active-rest cycle that is correlated with moonlight brightness. A second example based on six pairs of African buffalo (Syncerus caffer) illustrates the use of wavelet coherency to show that their movements synchronize when they are within approximately 1 km of each other, even when individual movement was best described as an uncorrelated random walk, providing an important spatial baseline of movement synchrony and suggesting that local behavioral cues play a strong role in driving movement patterns. We conclude with a discussion about the role these methods may have in guiding appropriately flexible probabilistic models connecting movement with biotic and abiotic covariates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032889 | PMC |
http://dx.doi.org/10.1890/08-2159.1 | DOI Listing |
Nat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFJ Gen Physiol
January 2025
Chemistry Department, University of Massachusetts Lowell, Lowell, MA, USA.
Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.
View Article and Find Full Text PDFEcol Lett
January 2025
U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA.
Patterns of phytochemistry localisation in plant tissues are diverse within and across leaves. These spatial heterogeneities are important to the fitness of herbivores, but their effects on herbivore foraging and dietary experience remain elusive. We manipulated the spatial variance and clusteredness of a plant toxin in a synthetic diet landscape on which individual caterpillars fed.
View Article and Find Full Text PDFEcol Lett
January 2025
School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Theory suggests that animals make hierarchical, multiscale resource selection decisions to address the hierarchy of factors limiting their fitness. Ecologists have developed tools to link population-level resource selection across scales; yet, theoretical expectations about the relationship between coarse- and fine-scale selection decisions at the individual level remain elusive despite their importance to fitness. With GPS-telemetry data collected across California, USA, we evaluated resource selection of mountain lions (Puma concolor; n = 244) relative to spatial variation in human-caused mortality risk.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!