The appearance of large-conductance, calcium-activated potassium (BK) current is a hallmark of functional maturation in auditory hair cells. Acquisition of this fast-activating current enables high-frequency, graded receptor potentials in all vertebrates and an electrical tuning mechanism in nonmammals. The gene encoding BK alpha subunits is highly alternatively spliced, and the resulting variations in channel isoforms may contribute to functional diversity at the onset of hearing. We examined the tissue specificity of nine BK alpha alternative exons and investigated changes in expression during chick cochlear development using quantitative polymerase chain reaction (qPCR). Each alternative was widely expressed in several tissues except for an insert near the C-terminus Ca(2+) sensing domain, which appeared brain-specific. The only alternative form in the membrane-bound core of the channel was expressed in brain and muscle but was undetected in cochlea. Of the remaining variants, three increased in expression prior to the onset of hearing and acquisition of BK currents. These three variants cause decreased Ca(2+) sensitivity or increased intracellular retention, traits that would not easily explain the advent of calcium-sensitive currents at embryonic day (E)18-19. Expression levels of other variants were mature and stable by E15, days before currents were acquired. Surface expression of C-terminal isoforms was examined using patch-clamp electrophysiology and immunocytochemistry. C-terminal variants that exhibit robust surface expression appeared in the membrane at E18, even though transcripts were unchanged during development starting from E12. These results indicate that delays in protein synthesis and trafficking/scaffolding of channel subunits underlie the late acquisition of BK currents in cochlear hair cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480179PMC
http://dx.doi.org/10.1002/cne.22352DOI Listing

Publication Analysis

Top Keywords

calcium-activated potassium
8
chick cochlear
8
cochlear development
8
hair cells
8
onset hearing
8
acquisition currents
8
surface expression
8
expression
6
variants
5
expression bk-type
4

Similar Publications

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by various pathological features including amyloid-β deposition and tau hyperphosphorylation, with cerebral microvascular dysfunction likely playing a role in its progression.
  • Researchers investigated the microvascular responses and potassium channel activity in an AD mouse model induced by streptozotocin (STZ), using behavioral tests and cellular assays.
  • The study found that STZ-AD mice showed poorer performance on behavioral tests and had impaired microvascular responses, which were further deteriorated by exposure to soluble Aβ, indicating a potential link between microvascular dysfunction and AD pathology.
View Article and Find Full Text PDF

BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus.

Proc Natl Acad Sci U S A

January 2025

Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.

BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!