Pixel accuracy in images from high-resolution computed tomography (HRCT) is ultimately limited by reconstruction error and noise. While for visual analysis this may not be relevant, for computer-aided quantitative analysis in either densitometric, or shape studies aiming at accurate results, the impact of pixel uncertainty must be taken into consideration. In this work, we study several denoising methods: geometric mean filter, Wiener filtering, and wavelet denoising. The performance of each method was assessed through visual inspection, profile region intensity analysis, and global figures of merit, using images from brain and thoracic phantoms, as well as several real thoracic HRCT images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092045 | PMC |
http://dx.doi.org/10.1007/s10278-010-9305-6 | DOI Listing |
Small Methods
January 2025
Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China.
Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China.
Ground-Penetrating Radar (GPR) has demonstrated significant advantages in the non-destructive detection of road structural defects due to its speed, safety, and efficiency. This paper proposes a three-dimensional (3D) reconstruction method for GPR images, integrating the back-projection (BP) imaging algorithm to accurately determine the size, location, and other parameters of road structural defects. Initially, GPR detection images were preprocessed, including direct wave removal and wavelet denoising, followed by the application of the BP algorithm to effectively restore the defect's location and size.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Information Network Center, Chengdu University, Chengdu 610106, China.
Airborne transient electromagnetic (ATEM) surveys provide a fast, flexible approach for identifying conductive metal deposits across a variety of intricate terrains. Nonetheless, the secondary electromagnetic response signals captured by ATEM systems frequently suffer from numerous noise interferences, which impede effective data processing and interpretation. Traditional denoising methods often fall short in addressing these complex noise backgrounds, leading to less-than-optimal signal extraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!