Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elite athletes often undertake altitude training to improve sea-level athletic performance, yet the optimal methodology has not been established. A combined approach of live high/train low plus train high (LH/TL+TH) may provide an additional training stimulus to enhance performance gains. Seventeen male and female middle-distance runners with maximal aerobic power (VO2max) of 65.5 +/- 7.3 mL kg(-1) min(-1) (mean +/- SD) trained on a treadmill in normobaric hypoxia for 3 weeks (2,200 m, 4 week(-1)). During this period, the train high (TH) group (n = 9) resided near sea-level (approximately 600 m) while the LH/TL+TH group (n = 8) stayed in normobaric hypoxia (3,000 m) for 14 hours day(-1). Changes in 3-km time trial performance and physiological measures including VO2max, running economy and haemoglobin mass (Hb(mass)) were assessed. The LH/TL+TH group substantially improved VO2max (4.8%; +/-2.8%, mean; +/-90% CL), Hb(mass) (3.6%; +/-2.4%) and 3-km time trial performance (-1.1%; +/-1.0%) immediately post-altitude. There was no substantial improvement in time trial performance 2 weeks later. The TH group substantially improved VO2max (2.2%; +/-1.8%), but had only trivial changes in Hb(mass) and 3-km time-trial performance. Compared with TH, combined LH/TL+TH substantially improved VO2max (2.6%; +/-3.2%), Hb(mass) (4.3%; +/-3.2%), and time trial performance (-0.9%; +/-1.4%) immediately post-altitude. LH/TL+TH elicited greater enhancements in physiological capacities compared with TH, however, the transfer of benefits to time-trial performance was more variable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-010-1516-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!