Healable polymeric materials: a tutorial review.

Chem Soc Rev

Department of Chemistry, University of Reading, Whiteknights, Reading, UKRG6 6AD.

Published: June 2010

Given the extensive use of polymers in the modern age with applications ranging from aerospace components to microcircuitry, the ability to regain the mechanical and physical characteristics of complex pristine materials after damage is an attractive proposition. This tutorial review focusses upon the key chemical concepts that have been successfully utilised in the design of healable polymeric materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b904502nDOI Listing

Publication Analysis

Top Keywords

healable polymeric
8
polymeric materials
8
tutorial review
8
materials tutorial
4
review extensive
4
extensive polymers
4
polymers modern
4
modern age
4
age applications
4
applications ranging
4

Similar Publications

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.

View Article and Find Full Text PDF

A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of ISB improved tensile properties, while the urethane bonds formed between the hydroxyl groups in ISB and isocyanate exhibited reversible characteristics at elevated temperatures, significantly enhancing the self-healing performance of DIS-based PUE compared to the control PUE (self-healing efficiency: 98% for DIS-based PUE vs.

View Article and Find Full Text PDF

Dynamic Boronic Ester Cross-Linked Polymers with Tunable Properties via Side-Group Engineering.

Polymers (Basel)

December 2024

Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

The development of dynamic covalent materials with repairability, reprocessability, and recyclability is crucial for sustainable development. In this work, we report a new strategy to adjust the thermomechanical properties of boronic ester cross-linked poly(β-hydroxyl amine)s through side-group engineering. By tuning the side groups of the poly(β-hydroxyl amine)s, we have developed self-healable, reprocessable, and shape-programmable materials.

View Article and Find Full Text PDF

The development of healable polymers represents a significant advancement in materials science, addressing the need for sustainable solutions that can reduce waste and prolong the lifespan of various products. For the development of healable polymer fabrics, however, there are still unsolved issues because of limited healing cycles and poor mechanical properties. In this work, we present intrinsically healable materials for the creation of stretchable, healable fabrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!