Background: The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTalpha to CCTzeta). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (alpha, beta and gamma) and actin, as quantitatively major substrates.

Methodology/principal Findings: We disrupted the genes encoding CCTalpha and CCTdelta subunits in the ciliate Tetrahymena. Cells lacking the zygotic expression of either CCTalpha or CCTdelta showed a loss of cell body microtubules, failed to assemble new cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying of tips of axonemal microtubules. An epitope-tagged CCTalpha rescued the gene knockout phenotype and localized primarily to the tips of cilia. A mutation in CCTalpha, G346E, at a residue also present in the related protein implicated in the Bardet Biedel Syndrome, BBS6, also caused defects in cilia and impaired CCTalpha localization in cilia.

Conclusions/significance: Our results demonstrate that the CCT subunits are essential and required for ciliary assembly and maintenance of axoneme structure, especially at the tips of cilia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872681PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010704PLOS

Publication Analysis

Top Keywords

cctalpha cctdelta
12
subunits essential
8
essential required
8
assembly maintenance
8
tips cilia
8
cctalpha
7
cilia
5
cctdelta chaperonin
4
subunits
4
chaperonin subunits
4

Similar Publications

Background: The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTalpha to CCTzeta). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (alpha, beta and gamma) and actin, as quantitatively major substrates.

Methodology/principal Findings: We disrupted the genes encoding CCTalpha and CCTdelta subunits in the ciliate Tetrahymena.

View Article and Find Full Text PDF

The eukaryotic cytoplasmic chaperonin containing TCP-1 (CCT) is a hetero-oligomeric complex that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. To understand the allosteric transitions that occur during the functional cycle of CCT, we imaged the chaperonin complex in the presence of different ATP concentrations. Labeling by monoclonal antibodies that bind specifically to the CCTalpha and CCTdelta subunits enabled alignment of all the CCT subunits of a given type in different particles.

View Article and Find Full Text PDF

The jakobids are free-living mitochondriate protists that share ultrastructural features with certain amitochondriate groups and possess the most bacterial-like mitochondrial genomes described thus far. Jakobids belong to a diverse group of mitochondriate and amitochondriate eukaryotes, the excavate taxa. The relationships among the various excavate taxa and their relationships to other putative deep-branching protist groups are largely unknown.

View Article and Find Full Text PDF

Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.

Mol Biol Evol

October 2000

Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.

Chaperonins are oligomeric protein-folding complexes which are divided into two distantly related structural classes. Group I chaperonins (called GroEL/cpn60/hsp60) are found in bacteria and eukaryotic organelles, while group II chaperonins are present in archaea and the cytoplasm of eukaryotes (called CCT/TriC). While archaea possess one to three chaperonin subunit-encoding genes, eight distinct CCT gene families (paralogs) have been characterized in eukaryotes.

View Article and Find Full Text PDF

The chaperonin CCT is an hetero-oligomeric molecular chaperone complex. Studies in yeast suggest each of its eight gene products are required for its major identified functions in producing native tubulins and actins. However, it is unclear whether these eight components always form a single particle, covering all functions, or else can also exist as heterogeneous mixtures and/or free subunits in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!