Skeletal site-related variation in human trabecular bone transcriptome and signaling.

PLoS One

Musculoskeletal Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom.

Published: May 2010

Background: The skeletal site-specific influence of multiple genes on bone morphology is recognised, but the question as to how these influences may be exerted at the molecular and cellular level has not been explored.

Methodology: To address this question, we have compared global gene expression profiles of human trabecular bone from two different skeletal sites that experience vastly different degrees of mechanical loading, namely biopsies from iliac crest and lumbar spinal lamina.

Principal Findings: In the lumbar spine, compared to the iliac crest, the majority of the differentially expressed genes showed significantly increased levels of expression; 3406 transcripts were up- whilst 838 were down-regulated. Interestingly, all gene transcripts that have been recently demonstrated to be markers of osteocyte, as well as osteoblast and osteoclast-related genes, were markedly up-regulated in the spine. The transcriptome data is consistent with osteocyte numbers being almost identical at the two anatomical sites, but suggesting a relatively low osteocyte functional activity in the iliac crest. Similarly, osteoblast and osteoclast expression data suggested similar numbers of the cells, but presented with higher activity in the spine than iliac crest. This analysis has also led to the identification of expression of a number of transcripts, previously known and novel, which to our knowledge have never earlier been associated with bone growth and remodelling.

Conclusions And Significance: This study provides molecular evidence explaining anatomical and micro-architectural site-related changes in bone cell function, which is predominantly attributable to alteration in cell transcriptional activity. A number of novel signaling molecules in critical pathways, which have been hitherto not known to be expressed in bone cells of mature vertebrates, were identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872667PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010692PLOS

Publication Analysis

Top Keywords

iliac crest
16
human trabecular
8
trabecular bone
8
bone
6
skeletal site-related
4
site-related variation
4
variation human
4
bone transcriptome
4
transcriptome signaling
4
signaling background
4

Similar Publications

A non-metallic PEEK topology optimization reconstruction implant for large mandibular continuity defects, validated using the MANDYBILATOR apparatus.

Sci Rep

January 2025

Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.

In cases of large mandibular continuity defects resulting from malignancy resection, the current standard of care involves using patient-specific/custom titanium reconstruction plates along with autogenous grafts (fibula, scapula, or iliac crest segments). However, when grafts are not feasible or desired, only the reconstruction plate is used to bridge the gap. Unfortunately, metal osteosynthesis and reconstruction plates, including titanium, exhibit adverse effects such as stress-shielding and limitations in accurate postoperative irradiation (especially with proton-beam therapy).

View Article and Find Full Text PDF

Vertebral level in pregnancy according to the posterior superior iliac spine: an observational study.

BMC Pregnancy Childbirth

December 2024

Department of Anesthesiology, West China Second University Hospital, Sichuan University, 20#, Section 3 Renmin Nan Road, Chengdu, Sichuan, 610041, PR China.

Background: While the line joining the posterior superior iliac spine (PSIS) intersects a relatively stable sacral vertebra, it does not directly facilitate the localization of lumbar interspace or assist in the positioning for neuraxial anesthesia. Our study aimed to explore the potential of the PSIS line as a reference point and to determine its practical applicability in clinical settings.

Methods: We consecutively enrolled pregnant women with gestational ages ranging from 24 to 38 weeks scheduled for magnetic resonance imaging (MRI) examination.

View Article and Find Full Text PDF

Background: Cancellous bone mechanical properties are directly linked to structural integrity, which is a result of bone quantity, the quality of its bone matrix, and its microarchitecture. Several studies highlighted the bone behavior under specific loads, contributing to understanding risk factors and developing more effective therapeutic strategies. The anatomy and stability of iliac bone fractures, providing insight into pelvic trauma management.

View Article and Find Full Text PDF

Background: Pelvic reconstruction after type I + II (or type I + II + III) internal hemipelvectomy with extensive ilium removal is a great challenge. In an attempt to anatomically reconstruct the hip rotation center (HRC) and achieve a low mechanical failure rate, a custom-made, 3D-printed prosthesis with a porous articular interface was developed. The aim of this study was to investigate the clinical outcomes of patients treated with this prosthesis.

View Article and Find Full Text PDF

Nothronychus graffami was a large therizinosaur represented by a single well-preserved individual from the Turonian Tropic Shale of southern Utah. It is characterized by an enlarged abdomen, small tail, and an extensively pneumatized axial skeleton, and is frequently regarded as herbivorous. Given the overall tail reduction and the development of a wide fused synsacrum with widely spaced acetabulae, it is reconstructed with an anteriorly rotated femur and a displaced resting ground reaction force anterior to the center of mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!