The ocular surface is in constant contact with the environment (e.g. when using one's fingers to insert a contact lens) and thus also with diverse bacteria, bacterial components and their pathogen associated molecules. Dysfunctions of the tear film structure or decreased moistening of the ocular surface, as in dry eye (keratoconjunctivitis sicca) for example, often lead to inflammatory and infectious complications resulting in severe functional disorders, particularly concerning the cornea. Besides different protective antimicrobial substances in the tear fluid (mucins, lysozyme, lactoferrin), the epithelia of cornea and conjunctiva can also protect themselves from microbial invasion by producing an arsenal of antimicrobial peptides (AMPs). A number of different studies have revealed that small cationic AMPs, which display antimicrobial activity against a broad spectrum of microorganisms, are a major component of the innate immune system at the human ocular surface. Furthermore, several AMPs modulate cellular activation processes like migration, proliferation, chemotaxis and cytokine production, and in this way also affect the adaptive immune system. In this article, we have summarized current knowledge of the mechanisms of activity and functional roles of AMPs, with a focus on potential multifunctional roles of human beta-defensins and S100 peptide psoriasin (S100A7) at the ocular surface.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000315016DOI Listing

Publication Analysis

Top Keywords

ocular surface
20
antimicrobial peptides
8
innate immune
8
immune system
8
ocular
5
surface
5
antimicrobial
4
peptides major
4
major innate
4
immune defense
4

Similar Publications

Distinct Ocular Surface Microbiome in Keratoconus Patients Correlate With Local Immune Dysregulation.

Invest Ophthalmol Vis Sci

January 2025

GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India.

Purpose: Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles.

View Article and Find Full Text PDF

The hypercapnic environment on the International Space Station (ISS): A potential contributing factor to ocular surface symptoms in astronauts.

Life Sci Space Res (Amst)

February 2025

Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States.

With increasing advancements and efforts towards space exploration, there is a pressing need to understand the impacts of spaceflight on astronauts' health. Astronauts have reported signs and symptoms of dry eye disease upon traveling to the International Space Station (ISS), thus necessitating an evaluation of the factors that contribute to the onset of spaceflight associated dry eye disease. Prior literature describes the hypercapnic environment of the ISS; however, the link between the high CO levels and astronauts' symptoms of dry eye disease remains unexplored.

View Article and Find Full Text PDF

Clinical Relevance: The prevalence of male androgenetic alopecia is increasing worldwide. Evaluation of dry eye parameters and meibomian glands of male androgenetic alopecia patients may help to better understand the effect of this disease on dry eye and to provide appropriate treatment for these patients.

Background: The aim of this work is to evaluate the relationship between male androgenetic alopecia, dry eye, and meibomian gland function.

View Article and Find Full Text PDF

Purpose To determine the corneal topographic characteristics of children with blepharokeratoconjunctivitis (BKC), a chronic inflammatory ocular surface disease involving the lid margin, conjunctiva, and cornea. Methods The corneal topography of 21 children diagnosed with BKC between March 2008 and June 2019 at a single institution were reviewed retrospectively. Pachymetry and asymmetry indices were also analyzed.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!