Purpose: To investigate in vivo severity and topographic distribution of brain white matter (WM) fiber bundle atrophy in patients with Friedreich ataxia, a condition characterized by an uneven involvement of brain WM, and to correlate such findings with the clinical status of the patients.
Materials And Methods: The study was conducted with institutional review board approval. Written informed consent was obtained from each participant. Sixteen patients with Friedreich ataxia and 15 healthy control subjects were studied by using a 1.5-T magnetic resonance (MR) imager and 3-mm-thick diffusion-tensor images with 15 noncollinear directions. The size of WM fiber bundles was examined at a voxel level by using a recently developed method, which relies on production of anisotropy maps and nonlinear registration. Data were analyzed by using statistical parametric mapping software and an analysis of covariance model adjusted for age and sex.
Results: Compared with control subjects, patients with Friedreich ataxia had WM atrophy in (a) the central portion of the medulla oblongata, (b) the dorsal upper pons, (c) the superior cerebellar peduncles, (d) the central portion of the midbrain, (e) the medial portion of the right cerebral peduncle, (f) the peridentate region, bilaterally, and (g) the optic chiasm. The severity of the neurologic deficits correlated significantly with atrophy of the peridentate WM, bilaterally, and that of the superior cerebellar peduncle decussation.
Conclusion: Findings of this study show that it is feasible to obtain in vivo atrophy estimates of specific brain WM fiber bundles in patients with Friedreich ataxia and that such estimates correlate with patients' clinical status. This approach has the potential to provide new information that is likely to improve the understanding of the pathophysiology of inherited ataxias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.10091742 | DOI Listing |
Neurol Clin Pract
February 2025
University of Rochester School of Medicine and Dentistry (JS, AV); Center for Health and Technology (CHeT) (JS, JW, AV, SJR, CE, AA, CZ, CRH), University of Rochester; University of Utah Spencer Fox Eccles School of Medicine (SJR); Des Moines University College of Osteopathic Medicine (AA); Department of Biostatistics and Neurology (ND), University of Rochester; Alzheimer's Disease Care, Research and Education Program (AD-CARE) (AM, SS-S, EJS), University of Rochester; and Department of Neurology (CRH), University of Rochester.
Background And Objectives: In preparation for future clinical trials involving individuals with Alzheimer disease (AD), mild cognitive impairment (MCI), and dementia, it is important to ascertain the widespread impact of symptoms from the direct perspectives of patients and caregivers. In this study, we performed cross-sectional surveys using large-scale patient and caregiver data to identify the prevalence and average impact of symptoms and symptomatic themes experienced by adults with AD, MCI, and dementia. Subsequent analyses were used to determine which demographic and disease-specific factors are associated with more severe disease.
View Article and Find Full Text PDFPacing Clin Electrophysiol
December 2024
Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey.
This case report presents the management of tachycardiomyopathy (TCM) in a patient with Friedreich ataxia, a hereditary disorder characterized by progressive neurodegeneration and associated cardiac complications. The patient exhibited severe tachycardia-induced cardiac dysfunction, complicating the clinical picture due to the overlapping neurological symptoms of Friedreich ataxia. Utilizing a 3D mapping system, catheter ablation was performed to accurately identify and target the arrhythmogenic foci contributing to the patient's TCM.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil.
Friedreich's Ataxia (FRDA) is the most common autosomal recessive ataxia worldwide and is caused by biallelic unstable intronic GAA expansions at FXN. With its limited therapy and the recent approval of the first disease-modifying agent for FRDA, the search for biological markers is urgently needed to assist and ease the development of therapies. MiRNAs have emerged as promising biomarkers in various medical fields such as oncology, cardiology, epilepsy and neurology as well.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Friedreich's ataxia (FRDA) is a neurodegenerative disorder characterized by severe neurological signs, affecting the peripheral and central nervous system, caused by reduced frataxin protein (FXN) levels. While several studies highlight cellular dysfunctions in neurons, there is limited information on the effects of FXN depletion in astrocytes and on the potential non-cell autonomous mechanisms affecting neurons in FRDA. In this study, we generated a model of FRDA cerebellar astrocytes to unveil phenotypic alterations that might contribute to cerebellar atrophy.
View Article and Find Full Text PDFNeurology
December 2024
Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany.
Background And Objectives: With targeted treatment trials on the horizon, identification of sensitive and valid outcome measures becomes a priority for >100 spastic ataxias. While digital-motor measures, assessed using wearable sensors, are considered prime outcome candidates for spastic ataxias, genotype-specific validation studies are lacking. We here aimed to identify candidate digital-motor outcomes for spastic paraplegia type 7 (SPG7)-one of the most common spastic ataxias-that (1) reflect patient-relevant health aspects, even in mild, trial-relevant disease stages; (2) are suitable for a multicenter setting; and (3) assess mobility also during uninstructed walking simulating real life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!