Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to investigate the molecular mechanisms by which AMP-kinase (AMPK) activation inhibits basal and insulin-stimulated glucose uptake in primary adipocytes. Rat epididymal adipocytes were exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 1 h. Subsequently, basal and insulin-stimulated glucose uptake and the phosphorylation of AMPK, acetyl-CoA carboxylase, Akt, and the Akt substrate of 160 kDa (AS160/TBC1D4) were determined. In order to investigate whether these effects of AICAR were mediated by AMPK activation, these parameters were also assessed in adipocytes either expressing LacZ (control) or a kinase-dead AMPKalpha1 mutant. AICAR increased AMPK activation without affecting basal and insulin-stimulated Akt1/2 phosphorylation on Thr(308) and Ser(473) residues. However, AMPK activation suppressed the phosphorylation of AS160/TBC1D4 and its interaction with the 14-3-3 signal transduction-regulatory protein, which was accompanied by significant reductions in plasma membrane glucose transporter 4 content and glucose uptake under basal and insulin-stimulated conditions. Phosphorylation of Akt substrates glycogen synthase kinase 3alpha and -beta were unaltered by AICAR, indicating that the AMPK-regulatory effects were specific to the AS160/TBC1D4 signaling pathway. Expression of the kinase-dead AMPKalpha1 mutant fully prevented the suppression of AS160/TBC1D4 phosphorylation, plasma membrane glucose transporter 4 content, and the inhibitory effect of AICAR-induced AMPK activation on basal and insulin-stimulated glucose uptake. This study is the first to provide evidence that disruption of AMPKalpha1 signaling prevents the suppressive effects of AMPK activation on AS160/TBC1D4 phosphorylation and glucose uptake, indicating that insulin-signaling steps that are common to white adipose tissue and skeletal muscle regulation of glucose uptake are distinctly affected by AMPK activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417465 | PMC |
http://dx.doi.org/10.1210/me.2009-0502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!