Purpose: Intrahepatic cholangiocarcinoma (ICC), a highly malignant hepatobiliary cancer, has a poor prognosis and is refractory to conventional therapies. The aim of this study is to discover a novel molecular target for the treatment of ICC.

Experimental Design: To discover novel cancer-associated membrane antigens expressed in ICC cells, we generated monoclonal antibodies (mAb) by immunizing mice with intact ICC cell lines and screened for those that bind to the plasma membrane of ICC cells but not to normal cells. The mAb A10-A3 was selected and its target antigen was identified as the L1 cell adhesion molecule. Expression of L1 in ICC was evaluated by immunohistochemical analysis of tumor samples from 42 ICC patients. The functional significance of L1 expression in the tumor progression of ICC was investigated by L1 suppression, L1 overexpression, and antibody treatment.

Results: L1 was not expressed in normal hepatocytes and intrahepatic bile duct epithelium but highly expressed in 40.5% of ICC patients, remarkably at the invasive front of the tumors. Suppression of L1 with short hairpin RNA significantly decreased proliferation, migration, and invasion of ICC cells in vitro. Consistently, L1 overexpression in ICC cells enhanced proliferation, migration, invasion, and apoptosis resistance. In addition, L1 short hairpin RNA or anti-L1 mAb significantly reduced the tumor growth in nude mice bearing ICC xenograft.

Conclusions: We identified that L1 is expressed in ICC. L1 plays an important role in the tumor progression of ICC by enhancing cell proliferation, migration, invasion, and survival. L1 may represent a novel therapeutic target for ICC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-09-3075DOI Listing

Publication Analysis

Top Keywords

icc cells
16
icc
14
proliferation migration
12
migration invasion
12
cell adhesion
8
adhesion molecule
8
novel therapeutic
8
therapeutic target
8
intrahepatic cholangiocarcinoma
8
discover novel
8

Similar Publications

Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.

View Article and Find Full Text PDF

Dose-dependent impact of intact cell fraction on in vitro starch digestion of common bean-based flour blends.

Food Chem

January 2025

Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium. Electronic address:

Pulse flours consisting of isolated cotyledon cells (ICC) have been incorporated in foods with delayed amylolysis. To optimize the cost-benefit ratio, understanding how the dosage of cellular ingredient affects starch digestibility is essential. Therefore, dose-response relationships were established to evaluate the sensitivity of amylolysis kinetics to the inclusion of intact cells in whole common bean-based flours.

View Article and Find Full Text PDF

Development and Validation of a Minimally Invasive Transuterine Experimental Model of Gastroschisis.

J Pediatr Surg

January 2025

The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA. Electronic address:

Introduction: Perinatal management of gastroschisis remains a subject of substantial research. Current models, including teratogenic, genetic, and surgical approaches, often fail to accurately replicate gastroschisis, exhibiting limitations such as inaccurate phenotyping, low success rates, high mortality, lack of scientific validation, and significant technical challenges. Refined disease models are essential for improving the understanding of GS.

View Article and Find Full Text PDF

The impact of graphene oxide nanoparticles on the migratory behavior of metastatic human breast cancer cell, MDA-MB-231.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Breast cancer (BC) with aggressive metastasis is a serious ongoing public health problem among women. Graphene oxide (GO) has an inhibitory effect on the migration rate and metastasis of BC cells, but its various aspects have not yet been explored. This paper aims to research into the effect of GO nanoparticles (GO-Np) on the migratory behavior of MDA-MB-231 as a metastatic human BC cell line.

View Article and Find Full Text PDF
Article Synopsis
  • Clonorchis sinensis infection significantly worsens overall survival rates in patients with intrahepatic cholangiocarcinoma (ICC) compared to those without the infection.
  • Researchers used RNA sequencing and animal models to investigate how C. sinensis infection facilitates the progression of ICC.
  • The study found that C. sinensis infection leads to increased expression of fatty acid synthase (FASN), which promotes fatty acid synthesis and tumor growth, suggesting a potential new target for treatment in ICC patients infected with C. sinensis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!