Recent discoveries in cancer biology have greatly increased our understanding of cancer at the molecular and cellular level, but translating this knowledge into safe and effective therapies for cancer patients has proved to be challenging. There is a growing imperative to modernize the drug development process by incorporating new techniques that can predict the safety and effectiveness of new drugs faster, with more certainty, and at lower cost. Biomarkers are central to accelerating the identification and adoption of new therapies, but currently, many barriers impede their use in drug development and clinical practice. In 2007, the AACR-FDA-NCI Cancer Biomarkers Collaborative stepped into the national effort to bring together disparate stakeholders to clearly delineate these barriers, to develop recommendations for integrating biomarkers into the cancer drug development enterprise, and to set in motion the necessary action plans and collaborations to see the promise of biomarkers come to fruition, efficiently delivering quality cancer care to patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-10-0880 | DOI Listing |
Biosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2025
1Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA;
The lymphatic vasculature plays critical roles in maintaining fluid homeostasis, transporting lipid, and facilitating immune surveillance. A growing body of work has identified lymphatic dysfunction as contributing to the severity of myriad diseases and to systemic inflammation, as well as modulating drug responses. Here, we review efforts to reconstruct lymphatic vessels in vitro toward establishing humanized, functional models to advance understanding of lymphatic biology and pathophysiology.
View Article and Find Full Text PDFChem Rev
January 2025
Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!