Presynaptic nerve terminals when depolarized are sensitive to morphological and functional alteration by horseradish peroxidase. Mouse brain slices, 0.1 mm, depolarized by a K(+)-HEPES buffer and exposed to horseradish peroxidase exhibited alterations in both synaptic vesicle membrane structure and in high-affinity [(14)C]?-aminobutyric acid uptake. The post stimulatory retrieval of synaptic vesicles from the nerve terminal plasma membrane in the presence of horseradish peroxidase resulted in a decrease in the synaptic vesicle population with a concurrent increase in non-synaptic vesicle membrane structures. High-affinity [(14)C]?-aminobutyric acid uptake into 0.1-mm slices of mouse cerebral cortex and ponsmedulla-spinal cord was inhibited by 31% and 24%, respectively, after incubation for 60 min in K(+)-HEPES buffer containing horseradish peroxidase. Superoxide dismutase protected both the synaptic vesicle membrane and the high-affinity uptake system from the deleterious effects of horseradish peroxidase, pointing to the possible involvement of superoxide anion radicals in the horseradish peroxidase-related effects. These horseradish peroxidase induced alterations appear to be directed towards the exposed synaptic vesicle membrane, since non-stimulated brain slices exposed to horseradish peroxidase do not exhibit a reduction in either high- or low-affinity [(14)C]?-aminobutyric acid uptake. Low-affinity uptake of [(14)C]?-aminobutyric acid and [(14)C]?-aminoisobutyric acid into cortical slices was not affected after incubation in K(+)-HEPES with horseradish peroxidase. Low-affinity uptake, however, is reduced by the high-K(+)/Na(+)-free stimulatory incubation prior to uptake. It appears, thus, that high- and low-affinity uptake are distinct and different systems, with the high-affinity transport system structurally associated with synaptic vesicle membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0197-0186(87)90121-5 | DOI Listing |
Analyst
January 2025
Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou 350005, China.
Methods based on enzyme labelling strategies have been widely developed for capacitance immunoassays, but most suffer from low sensitivity and are unfavorable for routine use in the early stages of diagnostics. Herein, we designed a highly efficient capacitance immunosensing method for the low-abundance neuroblastoma biomarker neuron-specific enolase (NSE) using an interdigitated micro-comb electrode. Initially, monoclonal mouse anti-human NSE capture antibodies were immobilized on the interdigitated gold electrodes using bovine serum albumin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
Recently, multi-enzyme cascade catalysis has attracted increasing attention due to the advantages of integrating multiple enzymes, few side reactions and high catalytic efficiency. Herein, a novel dual-enzyme cascade system (GOx-FMt-HRP) was developed through cofactor-directed orientational co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto functional montmorillonite (FMt). The presented method realizes the reconstitution of cofactors and apo-enzymes (enzymes without cofactors), which enables enzymes to be immobilized in specific orientations on the support, thereby effectively reducing changes in their conformation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China. Electronic address:
The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.
View Article and Find Full Text PDFAMB Express
January 2025
Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.
Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!