Evaluation of fungal burden and aflatoxin presence in packed medicinal plants treated by gamma radiation.

J Food Prot

Instituto Biológico de São Paulo, Av. Conselheiro Rodrigues Alves 1252, CEP 04014-002, São Paulo, SP, Brazil.

Published: May 2010

This study was developed to evaluate the fungal burden, toxigenic molds, and mycotoxin contamination and to verify the effects of gamma radiation in four kinds of medicinal plants stored before and after 30 days of irradiation treatment. Eighty samples of medicinal plants (Peumus boldus, Camellia sinensis, Maytenus ilicifolia, and Cassia angustifolia) purchased from drugstores, wholesale, and open-air markets in São Paulo city, Brazil, were analyzed. The samples were treated using a (60)Co gamma ray source (Gammacell) with doses of 5 and 10 kGy. Nonirradiated samples were used as controls of fungal isolates. For enumeration of fungi on medicinal plants, serial dilutions of the samples were plated in duplicate onto dichloran 18% glycerol agar. The control samples revealed a high burden of molds, including toxigenic fungi. The process of gamma radiation was effective in reducing the number of CFU per gram in all irradiated samples of medicinal plants after 30 days of storage, using a dose of 10 kGy and maintaining samples in a protective package. No aflatoxins were detected. Gamma radiation treatment can be used as an effective method for preventing fungal deterioration of medicinal plants subject to long-term storage.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-73.5.932DOI Listing

Publication Analysis

Top Keywords

medicinal plants
24
gamma radiation
16
fungal burden
8
samples medicinal
8
samples
7
medicinal
6
plants
6
gamma
5
evaluation fungal
4
burden aflatoxin
4

Similar Publications

Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!