Ball milling of easy glass forming Ti(25)Zr(17)Ni(29)Cu(29) alloys lead to the formation of an amorphous structure accompanied by a substantial increase of powder microhardness. The powders show clear glass transition effect and a few stage crystallization starting above 500 degrees C. High-resolution transmission electron microscope technique allowed identifying nanocrystalline inclusions as Cu(12)NiTi(7) within the amorphous powder. The amorphous powders mixed with nanocrystalline iron or silver powders were hot pressed to form composites. A narrow 200 nm broad intermediate single-phase layer at the amorphous-phase/iron interface containing all elements present in the composite was identified using transmission electron microscope and high-angle annular dark field detector techniques. scanning transmission electron microscopy energy dispersive spectroscopy line profile showed gradual change of composition within the intermediate zone. Amorphous phase contains small nanocrystals of size close to 10 nm identified using High-resolution transmission electron microscope as Cu(12)NiTi(7.) Compression tests have shown better plasticity of composites than in the case of pure hot-pressed amorphous powder; furthermore, high elastic limit of composites and the ultimate compression stress of about 1800 MPa for composites containing 20% Fe and near 700 MPa for those with 20% Ag.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2818.2009.03230.xDOI Listing

Publication Analysis

Top Keywords

transmission electron
16
electron microscope
12
high-resolution transmission
8
amorphous powder
8
amorphous
6
composites
5
hrtem studies
4
studies amorphous
4
amorphous zrniticu
4
zrniticu nanocrystalline
4

Similar Publications

Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.

View Article and Find Full Text PDF

Low Voltage Electron Microscopy: An Emerging Tool for AAV Characterization.

J Pharm Sci

January 2025

Formerly with Spark Therapeutics, Inc., 3025 Market Street, Philadelphia, PA, 19104.

Transmission electron microscopy has become a standard characterization tool for adeno-associated virus-based gene therapy products. However, cost and expertise requirements place in-house traditional transmission electron microscope systems out of reach for many companies in the field. Recently developed low voltage electron microscopes can fulfill many of the needs for adeno-associated virus characterization at a fraction of the cost.

View Article and Find Full Text PDF

Electrochemical sensor based on tadpole-shaped Au nanostructures supported on TiO: Enhanced detection of nicotine in electronic cigarettes and clinical samples.

Talanta

January 2025

Ampere - Laboratório de Plataformas Eletroquímicas. Departamento de Química, Universidade Federal de Santa Catarina, 880400-900, Florianópolis, SC, Brazil. Electronic address:

Nicotine (NIC) detection is vital for monitoring its presence in various environments, including tobacco products, electronic cigarettes, and clinical samples; NIC's widespread use and health implications necessitate precise and reliable detection methods as it is linked to diseases such as lung cancer and vascular disorders. In this study, we developed and characterized Au tadpole-like nanostructures immobilized onto titanium oxide (TiO) to provide a cost-effective and sensitive NIC detection material. The comprehensive characterization of the composite used transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), showing the robustness of the synthesis.

View Article and Find Full Text PDF

An applied noise model for scintillation-based CCD detectors in transmission electron microscopy.

Sci Rep

January 2025

Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, 33098, Paderborn, Germany.

Measurements in general are limited in accuracy by the presence of noise. This also holds true for highly sophisticated scintillation-based CCD cameras, as they are used in medical applications, astronomy or transmission electron microscopy. Further, signals measured with pixelated detectors are convolved with the inherent detector point spread function.

View Article and Find Full Text PDF

Plant Oil Nano-Emulsions as a Potential Solution for Pest Control in Sustainable Agriculture.

Neotrop Entomol

January 2025

Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545-El-Shatby, Alexandria, Egypt.

The increasing demand for sustainable and eco-friendly pest control methods has led to a growing interest in the development of novel, plant-based pesticides. In this study, we investigated the potential of nano-emulsions containing plant oils (Portulaca oleracea, Raphanus sativus, and Rosmarinus officinalis) as a new approach for controlling three major pests: Aphis gossypii, Spodoptera littoralis, and Tetranychus urticae. Using ultrasonication, we prepared stable and uniform nano-emulsions characterized by thermodynamic properties, dynamic light scattering (DLS), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!