Experimental and computational thermodynamic study of three monofluoronitrobenzene isomers.

J Phys Chem B

Centro de Investigação em Química, Department of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal.

Published: June 2010

The present work reports the thermodynamic study performed on three monofluorinated nitrobenzene derivatives by a combination of experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the liquid phase of the three isomers of fluoronitrobenzene were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapor pressure study of the referred compounds was done by a static method and, from the obtained results, the phase diagrams were elaborated, and the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation and fusion, at T = 298.15 K, were determined. The combination of some of the referred thermodynamic parameters yielded the standard (p degrees = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of the studied compounds: Delta(f)H(m)(o) (2-fluoronitrobenzene, g) = -(102.4 +/- 1.5) kJ x mol(-1), Delta(f)H(m)(o) (3-fluoronitrobenzene, g) = -(128.0 +/- 1.7) kJ x mol(-1), and Delta(f)H(m)(o) (4-fluoronitrobenzene, g) = -(133.9 +/- 1.4) kJ x mol(-1). Using the empirical scheme developed by Cox, values of standard molar enthalpies of formation in the gaseous phase were estimated and afterwards compared with the ones obtained experimentally, and both were interpreted in terms of the molecular structure of the compounds. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. The computed values compare very well with the experimental results obtained in this work and show that 4-fluoronitrobenzene is the most stable isomer from the thermodynamic point of view. Furthermore, this composite approach was also used to obtain information about the gas-phase basicities, proton and electron affinities and, finally, adiabatic ionization enthalpies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp102024yDOI Listing

Publication Analysis

Top Keywords

molar enthalpies
16
enthalpies formation
16
standard molar
12
+/- mol-1
12
thermodynamic study
8
standard degrees
8
degrees mpa
8
mpa molar
8
formation gaseous
8
gaseous phase
8

Similar Publications

The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

A novel Schiff base ligand (L), bearing NO donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV-Vis, H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150-250 °C and began to degrade in stages, resulting in the development of respective metal oxides.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system with an unknown etiology. While disease-modifying therapies can slow progression, there is a need for more effective treatments. Quantitative structure-activity relationship (QSAR) modeling using topological indices derived from chemical graph theory is a promising approach to rationally design new drugs for MS.

View Article and Find Full Text PDF

Thermodynamics of TlPrBr Compound and Re-examination of Phase Equilibria in the PrBr-TlBr System.

ACS Omega

December 2024

Department of Inorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland.

The PrBr-TlBr phase diagram was first established in the 1970s. Due to some inaccuracies, it was redetermined using differential scanning calorimetry. The results obtained differ significantly from those in the literature, which has been discussed in this paper.

View Article and Find Full Text PDF

This study presents an in-depth molecular and structural characterization of novel biopolyesters developed under the trademark Bluepha. The primary aim was to elucidate the relationship between chemical structure, chain architecture, and material properties of these biopolyesters to define their potential applications across various sectors. Proton nuclear magnetic resonance (H NMR) analysis identified the biopolyesters as poly[()-3-hydroxybutyrate--()-3-hydroxyhexanoate] (PHBH) copolymers, containing 4% and 10% molar content of hydroxyhexanoate (HH) units, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!