Objective: As an opportunistic pathogen, Pseudomonas aeruginosa PAO1 can produce phenazine and its derivatives, which play a critical role in their pathogenesis. In many bacteria, RpoS, the product of rpoS gene, mediates biosynthesis of a set of secondary metabolites.

Objective: This study aims to elucidate rpoS gene's function and regulation on two phenazine gene clusters in Pseudomonas aeruginosa PAO1.

Methods: The rpoS gene and its upstream and downstream fragments were cloned from the chromosome of Pseudomonas aeruginosa. With the insertion of gentamycin resistance cassette (aacC1), the mutant PA-SG has been created by homologous recombination. Translational fusion plasmids phz1'-'lacZ (pMEZ1) and phz2'-'lacZ (pMEZ2) were constructed, and then were introduced into the wild type strain PAO1 and the mutant PA-SG, respectively. Activities of beta-galactosidase in them were determined with Miller method.

Results: In KMB or PPM medium, beta-galactosidase activity of phzl'-'lacZ in the mutant PA-SG is much more than that in the wild type strain. However, beta-galactosidase activity of phz2'-'lacZ in the wild type strain is 2 -3 folds more than that in the mutant PA-SG.

Conclusion: With these results, it is suggested that regulation mediated by rpoS gene on two phenazine loci is specific and different.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pseudomonas aeruginosa
12
rpos gene
12
mutant pa-sg
12
wild type
12
type strain
12
gene clusters
8
beta-galactosidase activity
8
gene
5
rpos
5
[effect rpos
4

Similar Publications

Phage Therapy as a Rescue Treatment for Recurrent Bentall Infection.

Viruses

January 2025

Service des Maladies Infectieuses et Tropicales, Hôpital Pitié Salpêtrière, APHP Sorbonne Université, 75013 Paris, France.

Phage therapy is experiencing renewed interest, particularly for antibiotic-resistant infections, and may also be useful for difficult-to-treat cases where surgery to remove foreign infected material is deemed too risky. We report a case of recurrent endocarditis with Bentall infection treated successfully with a combination of antibiotics and phages.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!