Variable drug responses among malignant cells within individual tumors may represent a barrier to their eradication using chemotherapy. Carcinoma cells expressing mesenchymal markers resist conventional and epidermal growth factor receptor (EGFR)-targeted chemotherapy. In this study, we evaluated whether mesenchymal-like sub-populations within human squamous cell carcinomas (SCCs) with predominantly epithelial features contribute to overall therapy resistance. We identified a mesenchymal-like subset expressing low E-cadherin (Ecad-lo) and high vimentin within the upper aerodigestive tract SCCs. This subset was both isolated from the cell lines and was identified in xenografts and primary clinical specimens. The Ecad-lo subset contained more low-turnover cells, correlating with resistance to the conventional chemotherapeutic paclitaxel in vitro. Epidermal growth factor induced less stimulation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways in Ecad-lo cells, which was likely due to lower EGFR expression in this subset and correlated with in vivo resistance to the EGFR-targeted antibody, cetuximab. The Ecad-lo and high E-cadherin subsets were dynamic in phenotype, showing the capacity to repopulate each other from single-cell clones. Taken together, these results provide evidence for a low-turnover, mesenchymal-like sub-population in SCCs with diminished EGFR pathway function and intrinsic resistance to conventional and EGFR-targeted chemotherapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039880 | PMC |
http://dx.doi.org/10.1038/onc.2010.170 | DOI Listing |
Epithelial Mesenchymal Transition (EMT) is an event where epithelial cells acquire mesenchymal-like phenotype. EMT can occur as a physiological phenomenon during tissue development and wound healing, but most importantly, EMT can confer highly invasive properties to epithelial carcinoma cells. The impairment of E-cadherin expression, an essential cell-cell adhesion protein, together with an increase in the expression of mesenchymal markers, such as N-cadherin, vimentin, and fibronectin, characterize the EMT process and are usually correlated with tumor migration, and metastization.
View Article and Find Full Text PDFOncogene
July 2010
Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
Variable drug responses among malignant cells within individual tumors may represent a barrier to their eradication using chemotherapy. Carcinoma cells expressing mesenchymal markers resist conventional and epidermal growth factor receptor (EGFR)-targeted chemotherapy. In this study, we evaluated whether mesenchymal-like sub-populations within human squamous cell carcinomas (SCCs) with predominantly epithelial features contribute to overall therapy resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!